Merge pull request #9 from BlackMATov/dev

Dev
This commit is contained in:
BlackMat MATov
2018-12-13 00:02:05 +07:00
committed by GitHub
4 changed files with 1084 additions and 8 deletions

399
jobber.hpp Normal file
View File

@@ -0,0 +1,399 @@
/*******************************************************************************
* This file is part of the "promise.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2018 Matvey Cherevko
******************************************************************************/
#pragma once
#include <cstdint>
#include <cassert>
#include <tuple>
#include <mutex>
#include <atomic>
#include <thread>
#include <chrono>
#include <memory>
#include <vector>
#include <utility>
#include <exception>
#include <stdexcept>
#include <type_traits>
#include <condition_variable>
#include "promise.hpp"
namespace jobber_hpp
{
using namespace promise_hpp;
enum class jobber_priority {
lowest,
below_normal,
normal,
above_normal,
highest
};
enum class jobber_wait_status {
no_timeout,
cancelled,
timeout
};
class jobber_cancelled_exception : public std::runtime_error {
public:
jobber_cancelled_exception()
: std::runtime_error("jobber has stopped working") {}
};
class jobber final : private detail::noncopyable {
public:
explicit jobber(std::size_t threads);
~jobber() noexcept;
template < typename F, typename... Args >
using async_invoke_result_t = invoke_hpp::invoke_result_t<
std::decay_t<F>,
std::decay_t<Args>...>;
template < typename F, typename... Args
, typename R = async_invoke_result_t<F, Args...> >
promise<R> async(F&& f, Args&&... args);
template < typename F, typename... Args
, typename R = async_invoke_result_t<F, Args...> >
promise<R> async(jobber_priority priority, F&& f, Args&&... args);
void pause() noexcept;
void resume() noexcept;
bool is_paused() const noexcept;
jobber_wait_status wait_all() const noexcept;
jobber_wait_status active_wait_all() noexcept;
template < typename Rep, typename Period >
jobber_wait_status wait_all_for(
const std::chrono::duration<Rep, Period>& timeout_duration) const;
template < typename Clock, typename Duration >
jobber_wait_status wait_all_until(
const std::chrono::time_point<Clock, Duration>& timeout_time) const;
template < typename Rep, typename Period >
jobber_wait_status active_wait_all_for(
const std::chrono::duration<Rep, Period>& timeout_duration);
template < typename Clock, typename Duration >
jobber_wait_status active_wait_all_until(
const std::chrono::time_point<Clock, Duration>& timeout_time);
private:
class task;
using task_ptr = std::unique_ptr<task>;
template < typename R, typename F, typename... Args >
class concrete_task;
private:
void push_task_(jobber_priority priority, task_ptr task);
task_ptr pop_task_() noexcept;
void shutdown_() noexcept;
void worker_main_() noexcept;
void process_task_(std::unique_lock<std::mutex> lock) noexcept;
private:
std::vector<std::thread> threads_;
std::vector<std::pair<jobber_priority, task_ptr>> tasks_;
std::atomic<bool> paused_{false};
std::atomic<bool> cancelled_{false};
std::atomic<std::size_t> active_task_count_{0};
mutable std::mutex tasks_mutex_;
mutable std::condition_variable cond_var_;
};
class jobber::task : private noncopyable {
public:
virtual ~task() noexcept = default;
virtual void run() noexcept = 0;
virtual void cancel() noexcept = 0;
};
template < typename R, typename F, typename... Args >
class jobber::concrete_task : public task {
F f_;
std::tuple<Args...> args_;
promise<R> promise_;
public:
template < typename U >
concrete_task(U&& u, std::tuple<Args...>&& args);
void run() noexcept final;
void cancel() noexcept final;
promise<R> future() noexcept;
};
template < typename F, typename... Args >
class jobber::concrete_task<void, F, Args...> : public task {
F f_;
std::tuple<Args...> args_;
promise<void> promise_;
public:
template < typename U >
concrete_task(U&& u, std::tuple<Args...>&& args);
void run() noexcept final;
void cancel() noexcept final;
promise<void> future() noexcept;
};
}
namespace jobber_hpp
{
inline jobber::jobber(std::size_t threads) {
try {
threads_.resize(threads);
for ( std::thread& thread : threads_ ) {
thread = std::thread(&jobber::worker_main_, this);
}
} catch (...) {
shutdown_();
throw;
}
}
inline jobber::~jobber() noexcept {
shutdown_();
}
template < typename F, typename... Args, typename R >
promise<R> jobber::async(F&& f, Args&&... args) {
return async(
jobber_priority::normal,
std::forward<F>(f),
std::forward<Args>(args)...);
}
template < typename F, typename... Args, typename R >
promise<R> jobber::async(jobber_priority priority, F&& f, Args&&... args) {
using task_t = concrete_task<
R,
std::decay_t<F>,
std::decay_t<Args>...>;
std::unique_ptr<task_t> task = std::make_unique<task_t>(
std::forward<F>(f),
std::make_tuple(std::forward<Args>(args)...));
promise<R> future = task->future();
std::lock_guard<std::mutex> guard(tasks_mutex_);
push_task_(priority, std::move(task));
return future;
}
inline void jobber::pause() noexcept {
std::lock_guard<std::mutex> guard(tasks_mutex_);
paused_.store(true);
cond_var_.notify_all();
}
inline void jobber::resume() noexcept {
std::lock_guard<std::mutex> guard(tasks_mutex_);
paused_.store(false);
cond_var_.notify_all();
}
inline bool jobber::is_paused() const noexcept {
return paused_;
}
inline jobber_wait_status jobber::wait_all() const noexcept {
std::unique_lock<std::mutex> lock(tasks_mutex_);
cond_var_.wait(lock, [this](){
return cancelled_ || !active_task_count_;
});
return cancelled_
? jobber_wait_status::cancelled
: jobber_wait_status::no_timeout;
}
inline jobber_wait_status jobber::active_wait_all() noexcept {
while ( !cancelled_ && active_task_count_ ) {
std::unique_lock<std::mutex> lock(tasks_mutex_);
cond_var_.wait(lock, [this](){
return cancelled_ || !active_task_count_ || !tasks_.empty();
});
if ( !tasks_.empty() ) {
process_task_(std::move(lock));
}
}
return cancelled_
? jobber_wait_status::cancelled
: jobber_wait_status::no_timeout;
}
template < typename Rep, typename Period >
jobber_wait_status jobber::wait_all_for(
const std::chrono::duration<Rep, Period>& timeout_duration) const
{
return wait_all_until(
std::chrono::steady_clock::now() + timeout_duration);
}
template < typename Clock, typename Duration >
jobber_wait_status jobber::wait_all_until(
const std::chrono::time_point<Clock, Duration>& timeout_time) const
{
std::unique_lock<std::mutex> lock(tasks_mutex_);
return cond_var_.wait_until(lock, timeout_time, [this](){
return cancelled_ || !active_task_count_;
}) ? jobber_wait_status::no_timeout
: jobber_wait_status::timeout;
}
template < typename Rep, typename Period >
jobber_wait_status jobber::active_wait_all_for(
const std::chrono::duration<Rep, Period>& timeout_duration)
{
return active_wait_all_until(
std::chrono::steady_clock::now() + timeout_duration);
}
template < typename Clock, typename Duration >
jobber_wait_status jobber::active_wait_all_until(
const std::chrono::time_point<Clock, Duration>& timeout_time)
{
while ( !cancelled_ && active_task_count_ ) {
if ( !(Clock::now() < timeout_time) ) {
return jobber_wait_status::timeout;
}
std::unique_lock<std::mutex> lock(tasks_mutex_);
cond_var_.wait_until(lock, timeout_time, [this](){
return cancelled_ || !active_task_count_ || !tasks_.empty();
});
if ( !tasks_.empty() ) {
process_task_(std::move(lock));
}
}
return cancelled_
? jobber_wait_status::cancelled
: jobber_wait_status::no_timeout;
}
inline void jobber::push_task_(jobber_priority priority, task_ptr task) {
tasks_.emplace_back(priority, std::move(task));
std::push_heap(tasks_.begin(), tasks_.end());
++active_task_count_;
cond_var_.notify_all();
}
inline jobber::task_ptr jobber::pop_task_() noexcept {
if ( !tasks_.empty() ) {
std::pop_heap(tasks_.begin(), tasks_.end());
task_ptr task = std::move(tasks_.back().second);
tasks_.pop_back();
return task;
}
return nullptr;
}
inline void jobber::shutdown_() noexcept {
{
std::lock_guard<std::mutex> guard(tasks_mutex_);
while ( !tasks_.empty() ) {
task_ptr task = pop_task_();
if ( task ) {
task->cancel();
--active_task_count_;
}
}
cancelled_.store(true);
cond_var_.notify_all();
}
for ( std::thread& thread : threads_ ) {
if ( thread.joinable() ) {
thread.join();
}
}
}
inline void jobber::worker_main_() noexcept {
while ( true ) {
std::unique_lock<std::mutex> lock(tasks_mutex_);
cond_var_.wait(lock, [this](){
return cancelled_ || (!paused_ && !tasks_.empty());
});
if ( cancelled_ ) {
break;
}
process_task_(std::move(lock));
}
}
inline void jobber::process_task_(std::unique_lock<std::mutex> lock) noexcept {
assert(lock.owns_lock());
task_ptr task = pop_task_();
if ( task ) {
lock.unlock();
task->run();
--active_task_count_;
cond_var_.notify_all();
}
}
}
namespace jobber_hpp
{
//
// concrete_task<R, F, Args...>
//
template < typename R, typename F, typename... Args >
template < typename U >
jobber::concrete_task<R, F, Args...>::concrete_task(U&& u, std::tuple<Args...>&& args)
: f_(std::forward<U>(u))
, args_(std::move(args)) {}
template < typename R, typename F, typename... Args >
void jobber::concrete_task<R, F, Args...>::run() noexcept {
try {
R value = invoke_hpp::apply(std::move(f_), std::move(args_));
promise_.resolve(std::move(value));
} catch (...) {
promise_.reject(std::current_exception());
}
}
template < typename R, typename F, typename... Args >
void jobber::concrete_task<R, F, Args...>::cancel() noexcept {
promise_.reject(jobber_cancelled_exception());
}
template < typename R, typename F, typename... Args >
promise<R> jobber::concrete_task<R, F, Args...>::future() noexcept {
return promise_;
}
//
// concrete_task<void, F, Args...>
//
template < typename F, typename... Args >
template < typename U >
jobber::concrete_task<void, F, Args...>::concrete_task(U&& u, std::tuple<Args...>&& args)
: f_(std::forward<U>(u))
, args_(std::move(args)) {}
template < typename F, typename... Args >
void jobber::concrete_task<void, F, Args...>::run() noexcept {
try {
invoke_hpp::apply(std::move(f_), std::move(args_));
promise_.resolve();
} catch (...) {
promise_.reject(std::current_exception());
}
}
template < typename F, typename... Args >
void jobber::concrete_task<void, F, Args...>::cancel() noexcept {
promise_.reject(jobber_cancelled_exception());
}
template < typename F, typename... Args >
promise<void> jobber::concrete_task<void, F, Args...>::future() noexcept {
return promise_;
}
}

View File

@@ -545,7 +545,7 @@ namespace promise_hpp
return state_->get();
}
void wait() const {
void wait() const noexcept {
state_->wait();
}
@@ -607,7 +607,7 @@ namespace promise_hpp
return storage_.value();
}
void wait() const {
void wait() const noexcept {
std::unique_lock<std::mutex> lock(mutex_);
cond_var_.wait(lock, [this](){
return status_ != status::pending;
@@ -934,7 +934,7 @@ namespace promise_hpp
state_->get();
}
void wait() const {
void wait() const noexcept {
state_->wait();
}
@@ -993,7 +993,7 @@ namespace promise_hpp
assert(status_ == status::resolved);
}
void wait() const {
void wait() const noexcept {
std::unique_lock<std::mutex> lock(mutex_);
cond_var_.wait(lock, [this](){
return status_ != status::pending;

307
scheduler.hpp Normal file
View File

@@ -0,0 +1,307 @@
/*******************************************************************************
* This file is part of the "promise.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2018 Matvey Cherevko
******************************************************************************/
#pragma once
#include <cstdint>
#include <cassert>
#include <tuple>
#include <mutex>
#include <atomic>
#include <chrono>
#include <memory>
#include <vector>
#include <utility>
#include <exception>
#include <stdexcept>
#include <type_traits>
#include <condition_variable>
#include "promise.hpp"
namespace scheduler_hpp
{
using namespace promise_hpp;
enum class scheduler_priority {
lowest,
below_normal,
normal,
above_normal,
highest
};
enum class scheduler_wait_status {
no_timeout,
cancelled,
timeout
};
class scheduler_cancelled_exception : public std::runtime_error {
public:
scheduler_cancelled_exception()
: std::runtime_error("scheduler has stopped working") {}
};
class scheduler final : private detail::noncopyable {
public:
scheduler();
~scheduler() noexcept;
template < typename F, typename... Args >
using schedule_invoke_result_t = invoke_hpp::invoke_result_t<
std::decay_t<F>,
std::decay_t<Args>...>;
template < typename F, typename... Args
, typename R = schedule_invoke_result_t<F, Args...> >
promise<R> schedule(F&& f, Args&&... args);
template < typename F, typename... Args
, typename R = schedule_invoke_result_t<F, Args...> >
promise<R> schedule(scheduler_priority scheduler_priority, F&& f, Args&&... args);
scheduler_wait_status process_all_tasks() noexcept;
template < typename Rep, typename Period >
scheduler_wait_status process_tasks_for(
const std::chrono::duration<Rep, Period>& timeout_duration) noexcept;
template < typename Clock, typename Duration >
scheduler_wait_status process_tasks_until(
const std::chrono::time_point<Clock, Duration>& timeout_time) noexcept;
private:
class task;
using task_ptr = std::unique_ptr<task>;
template < typename R, typename F, typename... Args >
class concrete_task;
private:
void push_task_(scheduler_priority scheduler_priority, task_ptr task);
task_ptr pop_task_() noexcept;
void shutdown_() noexcept;
void process_task_(std::unique_lock<std::mutex> lock) noexcept;
private:
std::vector<std::pair<scheduler_priority, task_ptr>> tasks_;
std::atomic<bool> cancelled_{false};
std::atomic<std::size_t> active_task_count_{0};
mutable std::mutex tasks_mutex_;
mutable std::condition_variable cond_var_;
};
class scheduler::task : private noncopyable {
public:
virtual ~task() noexcept = default;
virtual void run() noexcept = 0;
virtual void cancel() noexcept = 0;
};
template < typename R, typename F, typename... Args >
class scheduler::concrete_task : public task {
F f_;
std::tuple<Args...> args_;
promise<R> promise_;
public:
template < typename U >
concrete_task(U&& u, std::tuple<Args...>&& args);
void run() noexcept final;
void cancel() noexcept final;
promise<R> future() noexcept;
};
template < typename F, typename... Args >
class scheduler::concrete_task<void, F, Args...> : public task {
F f_;
std::tuple<Args...> args_;
promise<void> promise_;
public:
template < typename U >
concrete_task(U&& u, std::tuple<Args...>&& args);
void run() noexcept final;
void cancel() noexcept final;
promise<void> future() noexcept;
};
}
namespace scheduler_hpp
{
inline scheduler::scheduler() = default;
inline scheduler::~scheduler() noexcept {
shutdown_();
}
template < typename F, typename... Args, typename R >
promise<R> scheduler::schedule(F&& f, Args&&... args) {
return schedule(
scheduler_priority::normal,
std::forward<F>(f),
std::forward<Args>(args)...);
}
template < typename F, typename... Args, typename R >
promise<R> scheduler::schedule(scheduler_priority priority, F&& f, Args&&... args) {
using task_t = concrete_task<
R,
std::decay_t<F>,
std::decay_t<Args>...>;
std::unique_ptr<task_t> task = std::make_unique<task_t>(
std::forward<F>(f),
std::make_tuple(std::forward<Args>(args)...));
promise<R> future = task->future();
std::lock_guard<std::mutex> guard(tasks_mutex_);
push_task_(priority, std::move(task));
return future;
}
inline scheduler_wait_status scheduler::process_all_tasks() noexcept {
while ( !cancelled_ && active_task_count_ ) {
std::unique_lock<std::mutex> lock(tasks_mutex_);
cond_var_.wait(lock, [this](){
return cancelled_ || !active_task_count_ || !tasks_.empty();
});
if ( !tasks_.empty() ) {
process_task_(std::move(lock));
}
}
return cancelled_
? scheduler_wait_status::cancelled
: scheduler_wait_status::no_timeout;
}
template < typename Rep, typename Period >
scheduler_wait_status scheduler::process_tasks_for(
const std::chrono::duration<Rep, Period>& timeout_duration) noexcept
{
return process_tasks_until(
std::chrono::steady_clock::now() + timeout_duration);
}
template < typename Clock, typename Duration >
scheduler_wait_status scheduler::process_tasks_until(
const std::chrono::time_point<Clock, Duration>& timeout_time) noexcept
{
while ( !cancelled_ && active_task_count_ ) {
if ( !(Clock::now() < timeout_time) ) {
return scheduler_wait_status::timeout;
}
std::unique_lock<std::mutex> lock(tasks_mutex_);
cond_var_.wait_until(lock, timeout_time, [this](){
return cancelled_ || !active_task_count_ || !tasks_.empty();
});
if ( !tasks_.empty() ) {
process_task_(std::move(lock));
}
}
return cancelled_
? scheduler_wait_status::cancelled
: scheduler_wait_status::no_timeout;
}
inline void scheduler::push_task_(scheduler_priority priority, task_ptr task) {
tasks_.emplace_back(priority, std::move(task));
std::push_heap(tasks_.begin(), tasks_.end());
++active_task_count_;
cond_var_.notify_all();
}
inline scheduler::task_ptr scheduler::pop_task_() noexcept {
if ( !tasks_.empty() ) {
std::pop_heap(tasks_.begin(), tasks_.end());
task_ptr task = std::move(tasks_.back().second);
tasks_.pop_back();
return task;
}
return nullptr;
}
inline void scheduler::shutdown_() noexcept {
std::lock_guard<std::mutex> guard(tasks_mutex_);
while ( !tasks_.empty() ) {
task_ptr task = pop_task_();
if ( task ) {
task->cancel();
--active_task_count_;
}
}
cancelled_.store(true);
cond_var_.notify_all();
}
inline void scheduler::process_task_(std::unique_lock<std::mutex> lock) noexcept {
assert(lock.owns_lock());
task_ptr task = pop_task_();
if ( task ) {
lock.unlock();
task->run();
--active_task_count_;
cond_var_.notify_all();
}
}
}
namespace scheduler_hpp
{
//
// concrete_task<R, F, Args...>
//
template < typename R, typename F, typename... Args >
template < typename U >
scheduler::concrete_task<R, F, Args...>::concrete_task(U&& u, std::tuple<Args...>&& args)
: f_(std::forward<U>(u))
, args_(std::move(args)) {}
template < typename R, typename F, typename... Args >
void scheduler::concrete_task<R, F, Args...>::run() noexcept {
try {
R value = invoke_hpp::apply(std::move(f_), std::move(args_));
promise_.resolve(std::move(value));
} catch (...) {
promise_.reject(std::current_exception());
}
}
template < typename R, typename F, typename... Args >
void scheduler::concrete_task<R, F, Args...>::cancel() noexcept {
promise_.reject(scheduler_cancelled_exception());
}
template < typename R, typename F, typename... Args >
promise<R> scheduler::concrete_task<R, F, Args...>::future() noexcept {
return promise_;
}
//
// concrete_task<void, F, Args...>
//
template < typename F, typename... Args >
template < typename U >
scheduler::concrete_task<void, F, Args...>::concrete_task(U&& u, std::tuple<Args...>&& args)
: f_(std::forward<U>(u))
, args_(std::move(args)) {}
template < typename F, typename... Args >
void scheduler::concrete_task<void, F, Args...>::run() noexcept {
try {
invoke_hpp::apply(std::move(f_), std::move(args_));
promise_.resolve();
} catch (...) {
promise_.reject(std::current_exception());
}
}
template < typename F, typename... Args >
void scheduler::concrete_task<void, F, Args...>::cancel() noexcept {
promise_.reject(scheduler_cancelled_exception());
}
template < typename F, typename... Args >
promise<void> scheduler::concrete_task<void, F, Args...>::future() noexcept {
return promise_;
}
}

378
tests.cpp
View File

@@ -7,12 +7,17 @@
#define CATCH_CONFIG_FAST_COMPILE
#include "catch.hpp"
#include "promise.hpp"
namespace pr = promise_hpp;
#include <thread>
#include <numeric>
#include <cstring>
#include "jobber.hpp"
#include "promise.hpp"
#include "scheduler.hpp"
namespace jb = jobber_hpp;
namespace pr = promise_hpp;
namespace sd = scheduler_hpp;
namespace
{
struct obj_t {
@@ -977,3 +982,368 @@ TEST_CASE("get_and_wait") {
}
}
}
TEST_CASE("jobber") {
{
jb::jobber j(1);
auto pv0 = j.async([](){
throw std::exception();
});
REQUIRE_THROWS_AS(pv0.get(), std::exception);
}
{
auto pv0 = pr::promise<int>();
{
jb::jobber j{0};
pv0 = j.async([](){
return 42;
});
}
REQUIRE_THROWS_AS(pv0.get(), jb::jobber_cancelled_exception);
}
{
int v5 = 5;
jb::jobber j(1);
auto pv0 = j.async([](int v){
REQUIRE(v == 5);
throw std::exception();
}, v5);
REQUIRE_THROWS_AS(pv0.get(), std::exception);
auto pv1 = j.async([](int& v){
REQUIRE(v == 5);
return v != 5
? 0
: throw std::exception();
}, std::ref(v5));
REQUIRE_THROWS_AS(pv1.get(), std::exception);
auto pv3 = j.async([](int& v){
v = 4;
return v;
}, std::ref(v5));
REQUIRE(pv3.get() == v5);
REQUIRE(v5 == 4);
}
{
const float pi = 3.14159265358979323846264338327950288f;
jb::jobber j(1);
auto p0 = j.async([](float angle){
return std::sin(angle);
}, pi);
auto p1 = j.async([](float angle){
return std::cos(angle);
}, pi * 2);
REQUIRE(p0.get() == Approx(0.f).margin(0.01f));
REQUIRE(p1.get() == Approx(1.f).margin(0.01f));
}
{
jb::jobber j(1);
j.pause();
jb::jobber_priority max_priority = jb::jobber_priority::highest;
j.async([](){
std::this_thread::sleep_for(std::chrono::milliseconds(2));
});
for ( std::size_t i = 0; i < 10; ++i ) {
jb::jobber_priority p = static_cast<jb::jobber_priority>(
i % static_cast<std::size_t>(jb::jobber_priority::highest));
j.async(p, [&max_priority](jb::jobber_priority priority) {
REQUIRE(priority <= max_priority);
max_priority = priority;
}, p);
}
j.resume();
j.wait_all();
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 10; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
j.resume();
REQUIRE(counter < 10);
j.wait_all();
REQUIRE(counter == 10);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 10; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
REQUIRE(counter < 10);
j.active_wait_all();
REQUIRE(counter == 10);
}
{
jb::jobber j(1);
const auto time_now = [](){
return std::chrono::high_resolution_clock::now();
};
REQUIRE(jb::jobber_wait_status::no_timeout == j.wait_all_for(std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::no_timeout == j.wait_all_until(time_now() + std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::no_timeout == j.active_wait_all_for(std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::no_timeout == j.active_wait_all_until(time_now() + std::chrono::milliseconds(-1)));
j.pause();
j.async([]{});
REQUIRE(jb::jobber_wait_status::timeout == j.wait_all_for(std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::timeout == j.wait_all_until(time_now() + std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::timeout == j.active_wait_all_for(std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::timeout == j.active_wait_all_until(time_now() + std::chrono::milliseconds(-1)));
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 10; ++i ) {
j.async([&counter](){
++counter;
});
}
const auto time_now = [](){
return std::chrono::high_resolution_clock::now();
};
j.wait_all_for(std::chrono::milliseconds(10));
j.wait_all_until(time_now() + std::chrono::milliseconds(10));
REQUIRE(counter == 0);
j.active_wait_all_for(std::chrono::milliseconds(10));
j.active_wait_all_until(time_now() + std::chrono::milliseconds(10));
REQUIRE(counter > 0);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 50; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
const auto time_now = [](){
return std::chrono::high_resolution_clock::now();
};
const auto b = time_now();
j.resume();
j.wait_all_for(std::chrono::milliseconds(100));
REQUIRE(time_now() - b > std::chrono::milliseconds(50));
REQUIRE(counter > 2);
REQUIRE(counter < 50);
j.wait_all_until(time_now() + std::chrono::seconds(3));
REQUIRE(counter == 50);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 50; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
const auto time_now = [](){
return std::chrono::high_resolution_clock::now();
};
const auto b = time_now();
j.wait_all_for(std::chrono::milliseconds(15));
REQUIRE(time_now() - b > std::chrono::milliseconds(10));
REQUIRE(counter == 0);
j.wait_all_until(time_now() + std::chrono::milliseconds(15));
REQUIRE(time_now() - b > std::chrono::milliseconds(20));
REQUIRE(counter == 0);
j.active_wait_all_for(std::chrono::milliseconds(100));
REQUIRE(time_now() - b > std::chrono::milliseconds(70));
REQUIRE(counter > 2);
REQUIRE(counter < 50);
j.active_wait_all_until(time_now() + std::chrono::seconds(3));
REQUIRE(counter == 50);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 30; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
j.resume();
REQUIRE(jb::jobber_wait_status::timeout == j.wait_all_for(std::chrono::milliseconds(50)));
REQUIRE(counter > 0);
REQUIRE(jb::jobber_wait_status::no_timeout == j.wait_all_for(std::chrono::seconds(5)));
REQUIRE(counter == 30);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 30; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
REQUIRE(jb::jobber_wait_status::timeout == j.active_wait_all_for(std::chrono::milliseconds(50)));
REQUIRE(counter > 0);
REQUIRE(jb::jobber_wait_status::no_timeout == j.active_wait_all_for(std::chrono::seconds(5)));
REQUIRE(counter == 30);
}
{
jb::jobber j(2);
jb::jobber g(2);
std::vector<pr::promise<float>> jp(50);
for ( auto& jpi : jp ) {
jpi = j.async([&g](){
std::vector<pr::promise<float>> gp(50);
for ( std::size_t i = 0; i < gp.size(); ++i ) {
gp[i] = g.async([](float angle){
return std::sin(angle);
}, static_cast<float>(i));
}
return std::accumulate(gp.begin(), gp.end(), 0.f,
[](float r, pr::promise<float>& f){
return r + f.get();
});
});
}
float r0 = std::accumulate(jp.begin(), jp.end(), 0.f,
[](float r, pr::promise<float>& f){
return r + f.get();
});
float r1 = 0.f;
for ( std::size_t i = 0; i < 50; ++i ) {
r1 += std::sin(static_cast<float>(i));
}
REQUIRE(r0 == Approx(r1 * 50.f).margin(0.01f));
}
}
TEST_CASE("scheduler") {
{
sd::scheduler s;
auto pv0 = s.schedule([](){
throw std::exception();
});
s.process_all_tasks();
REQUIRE_THROWS_AS(pv0.get(), std::exception);
}
{
auto pv0 = pr::promise<int>();
{
sd::scheduler s;
pv0 = s.schedule([](){
return 42;
});
}
REQUIRE_THROWS_AS(pv0.get(), sd::scheduler_cancelled_exception);
}
{
sd::scheduler s;
int counter = 0;
s.schedule([&counter](){ ++counter; });
REQUIRE(counter == 0);
s.process_all_tasks();
REQUIRE(counter == 1);
s.schedule([&counter](){ ++counter; });
s.schedule([&counter](){ ++counter; });
REQUIRE(counter == 1);
s.process_all_tasks();
REQUIRE(counter == 3);
}
{
sd::scheduler s;
int counter = 0;
for ( std::size_t i = 0; i < 50; ++i ) {
s.schedule([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
s.process_tasks_for(std::chrono::milliseconds(-1));
s.process_tasks_for(std::chrono::milliseconds(0));
REQUIRE(counter == 0);
s.process_tasks_for(std::chrono::milliseconds(100));
REQUIRE(counter > 2);
REQUIRE(counter < 50);
s.process_tasks_for(std::chrono::seconds(3));
REQUIRE(counter == 50);
}
{
sd::scheduler s;
int counter = 0;
for ( std::size_t i = 0; i < 50; ++i ) {
s.schedule([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
const auto time_now = [](){
return std::chrono::high_resolution_clock::now();
};
const auto b = time_now();
s.process_tasks_until(time_now() - std::chrono::milliseconds(1));
s.process_tasks_until(time_now());
REQUIRE(counter == 0);
s.process_tasks_until(time_now() + std::chrono::milliseconds(100));
REQUIRE(time_now() - b > std::chrono::milliseconds(50));
REQUIRE(counter > 2);
REQUIRE(counter < 50);
s.process_tasks_until(time_now() + std::chrono::seconds(3));
REQUIRE(counter == 50);
}
{
sd::scheduler s;
std::string accumulator;
s.schedule(sd::scheduler_priority::lowest, [](std::string& acc){
acc.append("o");
}, std::ref(accumulator));
s.schedule(sd::scheduler_priority::below_normal, [](std::string& acc){
acc.append("l");
}, std::ref(accumulator));
s.schedule(sd::scheduler_priority::highest, [](std::string& acc){
acc.append("h");
}, std::ref(accumulator));
s.schedule(sd::scheduler_priority::above_normal, [](std::string& acc){
acc.append("e");
}, std::ref(accumulator));
s.schedule(sd::scheduler_priority::normal, [](std::string& acc){
acc.append("l");
}, std::ref(accumulator));
s.process_all_tasks();
REQUIRE(accumulator == "hello");
}
}