add flat_multimap and flat_multiset containers #4

This commit is contained in:
2019-05-10 05:35:29 +07:00
parent 8cfec62b26
commit 81308e53f2
4 changed files with 1691 additions and 0 deletions

View File

@@ -0,0 +1,436 @@
/*******************************************************************************
* This file is part of the "https://github.com/blackmatov/flat.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2019, by Matvey Cherevko (blackmatov@gmail.com)
******************************************************************************/
#pragma once
#include <vector>
#include <memory>
#include <utility>
#include <iterator>
#include <algorithm>
#include <functional>
#include <type_traits>
#include <initializer_list>
namespace flat_hpp
{
template < typename Key
, typename Value
, typename Compare = std::less<Key>
, typename Container = std::vector<std::pair<Key, Value>> >
class flat_multimap final {
class uber_comparer_type : public Compare {
public:
uber_comparer_type() = default;
uber_comparer_type(const Compare& c) : Compare(c) {}
bool operator()(const Key& l, const Key& r) const {
return Compare::operator()(l, r);
}
bool operator()(const Key& l, typename Container::const_reference r) const {
return Compare::operator()(l, r.first);
}
bool operator()(typename Container::const_reference l, const Key& r) const {
return Compare::operator()(l.first, r);
}
bool operator()(typename Container::const_reference l, typename Container::const_reference r) const {
return Compare::operator()(l.first, r.first);
}
};
public:
using key_type = Key;
using mapped_type = Value;
using value_type = typename Container::value_type;
using size_type = typename Container::size_type;
using difference_type = typename Container::difference_type;
using key_compare = Compare;
using container_type = Container;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using pointer = typename Container::pointer;
using const_pointer = typename Container::const_pointer;
using iterator = typename Container::iterator;
using const_iterator = typename Container::const_iterator;
using reverse_iterator = typename Container::reverse_iterator;
using const_reverse_iterator = typename Container::const_reverse_iterator;
class value_compare {
public:
bool operator()(const value_type& l, const value_type& r) const {
return compare_(l.first, r.first);
}
protected:
friend class flat_multimap;
explicit value_compare(key_compare compare)
: compare_(std::move(compare)) {}
private:
key_compare compare_;
};
public:
flat_multimap() {}
explicit flat_multimap(const Compare& c)
: compare_(c) {}
template < typename Allocator >
explicit flat_multimap(const Allocator& a)
: data_(a) {}
template < typename Allocator >
flat_multimap(const Compare& c, const Allocator& a)
: data_(a)
, compare_(c) {}
template < typename InputIter >
flat_multimap(InputIter first, InputIter last) {
insert(first, last);
}
template < typename InputIter >
flat_multimap(InputIter first, InputIter last, const Compare& c)
: compare_(c) {
insert(first, last);
}
template < typename InputIter, typename Allocator >
flat_multimap(InputIter first, InputIter last, const Allocator& a)
: data_(a) {
insert(first, last);
}
template < typename InputIter , typename Allocator >
flat_multimap(InputIter first, InputIter last, const Compare& c, const Allocator& a)
: data_(a)
, compare_(c) {
insert(first, last);
}
flat_multimap(std::initializer_list<value_type> ilist) {
insert(ilist);
}
flat_multimap(std::initializer_list<value_type> ilist, const Compare& c)
: compare_(c) {
insert(ilist);
}
template < typename Allocator >
flat_multimap(std::initializer_list<value_type> ilist, const Allocator& a)
: data_(a) {
insert(ilist);
}
template < typename Allocator >
flat_multimap(std::initializer_list<value_type> ilist, const Compare& c, const Allocator& a)
: data_(a)
, compare_(c) {
insert(ilist);
}
template < typename Allocator >
flat_multimap(flat_multimap&& other, const Allocator& a)
: data_(std::move(other.data_), a)
, compare_(std::move(other.compare_)) {}
template < typename Allocator >
flat_multimap(const flat_multimap& other, const Allocator& a)
: data_(other.data_, a)
, compare_(other.compare_) {}
flat_multimap(flat_multimap&& other) = default;
flat_multimap(const flat_multimap& other) = default;
flat_multimap& operator=(flat_multimap&& other) = default;
flat_multimap& operator=(const flat_multimap& other) = default;
flat_multimap& operator=(std::initializer_list<value_type> ilist) {
flat_multimap(ilist).swap(*this);
return *this;
}
iterator begin() noexcept { return data_.begin(); }
const_iterator begin() const noexcept { return data_.begin(); }
const_iterator cbegin() const noexcept { return data_.cbegin(); }
iterator end() noexcept { return data_.end(); }
const_iterator end() const noexcept { return data_.end(); }
const_iterator cend() const noexcept { return data_.cend(); }
reverse_iterator rbegin() noexcept { return data_.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return data_.rbegin(); }
const_reverse_iterator crbegin() const noexcept { return data_.crbegin(); }
reverse_iterator rend() noexcept { return data_.rend(); }
const_reverse_iterator rend() const noexcept { return data_.rend(); }
const_reverse_iterator crend() const noexcept { return data_.crend(); }
bool empty() const noexcept {
return data_.empty();
}
size_type size() const noexcept {
return data_.size();
}
size_type max_size() const noexcept {
return data_.max_size();
}
size_type capacity() const noexcept {
return data_.capacity();
}
void reserve(size_type ncapacity) {
data_.reserve(ncapacity);
}
void shrink_to_fit() {
data_.shrink_to_fit();
}
mapped_type& operator[](key_type&& key) {
const iterator iter = find(key);
return iter != end()
? iter->second
: emplace(std::move(key), mapped_type())->second;
}
mapped_type& operator[](const key_type& key) {
const iterator iter = find(key);
return iter != end()
? iter->second
: emplace(key, mapped_type())->second;
}
mapped_type& at(const key_type& key) {
const iterator iter = find(key);
if ( iter != end() ) {
return iter->second;
}
throw std::out_of_range("flat_multimap::at: key not found");
}
const mapped_type& at(const key_type& key) const {
const const_iterator iter = find(key);
if ( iter != end() ) {
return iter->second;
}
throw std::out_of_range("flat_multimap::at: key not found");
}
iterator insert(value_type&& value) {
const iterator iter = upper_bound(value.first);
return data_.insert(iter, std::move(value));
}
iterator insert(const value_type& value) {
const iterator iter = upper_bound(value.first);
return data_.insert(iter, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return (hint == begin() || !compare_(value, *(hint - 1)))
&& (hint == end() || !compare_(*hint, value))
? data_.insert(hint, std::move(value))
: insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return (hint == begin() || !compare_(value, *(hint - 1)))
&& (hint == end() || !compare_(*hint, value))
? data_.insert(hint, value)
: insert(value);
}
template < typename InputIter >
void insert(InputIter first, InputIter last) {
while ( first != last ) {
insert(*first++);
}
}
void insert(std::initializer_list<value_type> ilist) {
insert(ilist.begin(), ilist.end());
}
template < typename... Args >
iterator emplace(Args&&... args) {
return insert(value_type(std::forward<Args>(args)...));
}
template < typename... Args >
iterator emplace_hint(const_iterator hint, Args&&... args) {
return insert(hint, value_type(std::forward<Args>(args)...));
}
void clear() noexcept {
data_.clear();
}
iterator erase(const_iterator iter) {
return data_.erase(iter);
}
iterator erase(const_iterator first, const_iterator last) {
return data_.erase(first, last);
}
size_type erase(const key_type& key) {
const auto p = equal_range(key);
size_type r = std::distance(p.first, p.second);
erase(p.first, p.second);
return r;
}
void swap(flat_multimap& other) {
using std::swap;
swap(data_, other.data_);
swap(compare_, other.compare_);
}
size_type count(const key_type& key) const {
const auto p = equal_range(key);
return std::distance(p.first, p.second);
}
iterator find(const key_type& key) {
const iterator iter = lower_bound(key);
return iter != end() && !compare_(key, iter->first)
? iter
: end();
}
const_iterator find(const key_type& key) const {
const const_iterator iter = lower_bound(key);
return iter != end() && !compare_(key, iter->first)
? iter
: end();
}
std::pair<iterator, iterator> equal_range(const key_type& key) {
return std::equal_range(begin(), end(), key, compare_);
}
std::pair<const_iterator, const_iterator> equal_range(const key_type& key) const {
return std::equal_range(begin(), end(), key, compare_);
}
iterator lower_bound(const key_type& key) {
return std::lower_bound(begin(), end(), key, compare_);
}
const_iterator lower_bound(const key_type& key) const {
return std::lower_bound(begin(), end(), key, compare_);
}
iterator upper_bound(const key_type& key) {
return std::upper_bound(begin(), end(), key, compare_);
}
const_iterator upper_bound(const key_type& key) const {
return std::upper_bound(begin(), end(), key, compare_);
}
key_compare key_comp() const {
return compare_;
}
value_compare value_comp() const {
return value_compare(compare_);
}
private:
container_type data_;
uber_comparer_type compare_;
};
}
namespace flat_hpp
{
template < typename Key
, typename Value
, typename Compare
, typename Container >
void swap(
flat_multimap<Key, Value, Compare, Container>& l,
flat_multimap<Key, Value, Compare, Container>& r)
{
l.swap(r);
}
template < typename Key
, typename Value
, typename Compare
, typename Container >
bool operator==(
const flat_multimap<Key, Value, Compare, Container>& l,
const flat_multimap<Key, Value, Compare, Container>& r)
{
return l.size() == r.size()
&& std::equal(l.begin(), l.end(), r.begin());
}
template < typename Key
, typename Value
, typename Compare
, typename Container >
bool operator!=(
const flat_multimap<Key, Value, Compare, Container>& l,
const flat_multimap<Key, Value, Compare, Container>& r)
{
return !(l == r);
}
template < typename Key
, typename Value
, typename Compare
, typename Container >
bool operator<(
const flat_multimap<Key, Value, Compare, Container>& l,
const flat_multimap<Key, Value, Compare, Container>& r)
{
return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end());
}
template < typename Key
, typename Value
, typename Compare
, typename Container >
bool operator>(
const flat_multimap<Key, Value, Compare, Container>& l,
const flat_multimap<Key, Value, Compare, Container>& r)
{
return r < l;
}
template < typename Key
, typename Value
, typename Compare
, typename Container >
bool operator<=(
const flat_multimap<Key, Value, Compare, Container>& l,
const flat_multimap<Key, Value, Compare, Container>& r)
{
return !(r < l);
}
template < typename Key
, typename Value
, typename Compare
, typename Container >
bool operator>=(
const flat_multimap<Key, Value, Compare, Container>& l,
const flat_multimap<Key, Value, Compare, Container>& r)
{
return !(l < r);
}
}

View File

@@ -0,0 +1,364 @@
/*******************************************************************************
* This file is part of the "https://github.com/blackmatov/flat.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2019, by Matvey Cherevko (blackmatov@gmail.com)
******************************************************************************/
#pragma once
#include <vector>
#include <memory>
#include <utility>
#include <iterator>
#include <algorithm>
#include <functional>
#include <type_traits>
#include <initializer_list>
namespace flat_hpp
{
template < typename Key
, typename Compare = std::less<Key>
, typename Container = std::vector<Key> >
class flat_multiset final {
public:
using key_type = Key;
using value_type = Key;
using size_type = typename Container::size_type;
using difference_type = typename Container::difference_type;
using key_compare = Compare;
using value_compare = Compare;
using container_type = Container;
using reference = typename Container::reference;
using const_reference = typename Container::const_reference;
using pointer = typename Container::pointer;
using const_pointer = typename Container::const_pointer;
using iterator = typename Container::const_iterator;
using const_iterator = typename Container::const_iterator;
using reverse_iterator = typename Container::const_reverse_iterator;
using const_reverse_iterator = typename Container::const_reverse_iterator;
public:
flat_multiset() {}
explicit flat_multiset(const Compare& c)
: compare_(c) {}
template < typename Allocator >
explicit flat_multiset(const Allocator& a)
: data_(a) {}
template < typename Allocator >
flat_multiset(const Compare& c, const Allocator& a)
: data_(a)
, compare_(c) {}
template < typename InputIter >
flat_multiset(InputIter first, InputIter last) {
insert(first, last);
}
template < typename InputIter >
flat_multiset(InputIter first, InputIter last, const Compare& c)
: compare_(c) {
insert(first, last);
}
template < typename InputIter, typename Allocator >
flat_multiset(InputIter first, InputIter last, const Allocator& a)
: data_(a) {
insert(first, last);
}
template < typename InputIter, typename Allocator >
flat_multiset(InputIter first, InputIter last, const Compare& c, const Allocator& a)
: data_(a)
, compare_(c) {
insert(first, last);
}
flat_multiset(std::initializer_list<value_type> ilist) {
insert(ilist);
}
flat_multiset(std::initializer_list<value_type> ilist, const Compare& c)
: compare_(c) {
insert(ilist);
}
template < typename Allocator >
flat_multiset(std::initializer_list<value_type> ilist, const Allocator& a)
: data_(a) {
insert(ilist);
}
template < typename Allocator >
flat_multiset(std::initializer_list<value_type> ilist, const Compare& c, const Allocator& a)
: data_(a)
, compare_(c) {
insert(ilist);
}
template < typename Allocator >
flat_multiset(flat_multiset&& other, const Allocator& a)
: data_(std::move(other.data_), a)
, compare_(std::move(other.compare_)) {}
template < typename Allocator >
flat_multiset(const flat_multiset& other, const Allocator& a)
: data_(other.data_, a)
, compare_(other.compare_) {}
flat_multiset(flat_multiset&& other) = default;
flat_multiset(const flat_multiset& other) = default;
flat_multiset& operator=(flat_multiset&& other) = default;
flat_multiset& operator=(const flat_multiset& other) = default;
flat_multiset& operator=(std::initializer_list<value_type> ilist) {
flat_multiset(ilist).swap(*this);
return *this;
}
iterator begin() noexcept { return data_.begin(); }
const_iterator begin() const noexcept { return data_.begin(); }
const_iterator cbegin() const noexcept { return data_.cbegin(); }
iterator end() noexcept { return data_.end(); }
const_iterator end() const noexcept { return data_.end(); }
const_iterator cend() const noexcept { return data_.cend(); }
reverse_iterator rbegin() noexcept { return data_.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return data_.rbegin(); }
const_reverse_iterator crbegin() const noexcept { return data_.crbegin(); }
reverse_iterator rend() noexcept { return data_.rend(); }
const_reverse_iterator rend() const noexcept { return data_.rend(); }
const_reverse_iterator crend() const noexcept { return data_.crend(); }
bool empty() const noexcept {
return data_.empty();
}
size_type size() const noexcept {
return data_.size();
}
size_type max_size() const noexcept {
return data_.max_size();
}
size_type capacity() const noexcept {
return data_.capacity();
}
void reserve(size_type ncapacity) {
data_.reserve(ncapacity);
}
void shrink_to_fit() {
data_.shrink_to_fit();
}
iterator insert(value_type&& value) {
const iterator iter = upper_bound(value);
return data_.insert(iter, std::move(value));
}
iterator insert(const value_type& value) {
const iterator iter = upper_bound(value);
return data_.insert(iter, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return (hint == begin() || !compare_(value, *(hint - 1)))
&& (hint == end() || !compare_(*hint, value))
? data_.insert(hint, std::move(value))
: insert(std::move(value));
}
iterator insert(const_iterator hint, const value_type& value) {
return (hint == begin() || !compare_(value, *(hint - 1)))
&& (hint == end() || !compare_(*hint, value))
? data_.insert(hint, value)
: insert(value);
}
template < typename InputIter >
void insert(InputIter first, InputIter last) {
while ( first != last ) {
insert(*first++);
}
}
void insert(std::initializer_list<value_type> ilist) {
insert(ilist.begin(), ilist.end());
}
template < typename... Args >
iterator emplace(Args&&... args) {
return insert(value_type(std::forward<Args>(args)...));
}
template < typename... Args >
iterator emplace_hint(const_iterator hint, Args&&... args) {
return insert(hint, value_type(std::forward<Args>(args)...));
}
void clear() noexcept {
data_.clear();
}
iterator erase(const_iterator iter) {
return data_.erase(iter);
}
iterator erase(const_iterator first, const_iterator last) {
return data_.erase(first, last);
}
size_type erase(const key_type& key) {
const auto p = equal_range(key);
size_type r = std::distance(p.first, p.second);
erase(p.first, p.second);
return r;
}
void swap(flat_multiset& other) {
using std::swap;
swap(data_, other.data_);
swap(compare_, other.compare_);
}
size_type count(const key_type& key) const {
const auto p = equal_range(key);
return std::distance(p.first, p.second);
}
iterator find(const key_type& key) {
const iterator iter = lower_bound(key);
return iter != end() && !compare_(key, *iter)
? iter
: end();
}
const_iterator find(const key_type& key) const {
const const_iterator iter = lower_bound(key);
return iter != end() && !compare_(key, *iter)
? iter
: end();
}
std::pair<iterator, iterator> equal_range(const key_type& key) {
return std::equal_range(begin(), end(), key, compare_);
}
std::pair<const_iterator, const_iterator> equal_range(const key_type& key) const {
return std::equal_range(begin(), end(), key, compare_);
}
iterator lower_bound(const key_type& key) {
return std::lower_bound(begin(), end(), key, compare_);
}
const_iterator lower_bound(const key_type& key) const {
return std::lower_bound(begin(), end(), key, compare_);
}
iterator upper_bound(const key_type& key) {
return std::upper_bound(begin(), end(), key, compare_);
}
const_iterator upper_bound(const key_type& key) const {
return std::upper_bound(begin(), end(), key, compare_);
}
key_compare key_comp() const {
return compare_;
}
value_compare value_comp() const {
return value_compare(compare_);
}
private:
container_type data_;
Compare compare_;
};
}
namespace flat_hpp
{
template < typename Key
, typename Compare
, typename Container >
void swap(
flat_multiset<Key, Compare, Container>& l,
flat_multiset<Key, Compare, Container>& r)
{
l.swap(r);
}
template < typename Key
, typename Compare
, typename Container >
bool operator==(
const flat_multiset<Key, Compare, Container>& l,
const flat_multiset<Key, Compare, Container>& r)
{
return l.size() == r.size()
&& std::equal(l.begin(), l.end(), r.begin());
}
template < typename Key
, typename Compare
, typename Container >
bool operator!=(
const flat_multiset<Key, Compare, Container>& l,
const flat_multiset<Key, Compare, Container>& r)
{
return !(l == r);
}
template < typename Key
, typename Compare
, typename Container >
bool operator<(
const flat_multiset<Key, Compare, Container>& l,
const flat_multiset<Key, Compare, Container>& r)
{
return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end());
}
template < typename Key
, typename Compare
, typename Container >
bool operator>(
const flat_multiset<Key, Compare, Container>& l,
const flat_multiset<Key, Compare, Container>& r)
{
return r < l;
}
template < typename Key
, typename Compare
, typename Container >
bool operator<=(
const flat_multiset<Key, Compare, Container>& l,
const flat_multiset<Key, Compare, Container>& r)
{
return !(r < l);
}
template < typename Key
, typename Compare
, typename Container >
bool operator>=(
const flat_multiset<Key, Compare, Container>& l,
const flat_multiset<Key, Compare, Container>& r)
{
return !(l < r);
}
}

View File

@@ -0,0 +1,463 @@
/*******************************************************************************
* This file is part of the "https://github.com/blackmatov/flat.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2019, by Matvey Cherevko (blackmatov@gmail.com)
******************************************************************************/
#define CATCH_CONFIG_FAST_COMPILE
#include <catch2/catch.hpp>
#include <deque>
#include <flat_hpp/flat_multimap.hpp>
using namespace flat_hpp;
namespace
{
template < typename T >
class dummy_allocator {
public:
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using value_type = T;
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;
template < typename U >
struct rebind { using other = dummy_allocator<U>; };
dummy_allocator() = default;
dummy_allocator(int i) : i(i) {}
template < typename U >
dummy_allocator(const dummy_allocator<U>& o) noexcept {
i = o.i;
}
T* allocate(std::size_t n) noexcept {
return static_cast<T*>(std::malloc(sizeof(T) * n));
}
void deallocate(T* p, std::size_t n) noexcept {
(void)n;
std::free(p);
}
template < typename U, typename... Args >
void construct(U* p, Args&&... args) {
::new((void*)p) U(std::forward<Args>(args)...);
}
void destroy(pointer p) {
p->~T();
}
int i = 0;
};
template < typename T, typename U >
bool operator==(const dummy_allocator<T>&, const dummy_allocator<U>&) noexcept {
return true;
}
template < typename T, typename U >
bool operator!=(const dummy_allocator<T>& l, const dummy_allocator<U>& r) noexcept {
return !(l == r);
}
template < typename T >
constexpr std::add_const_t<T>& my_as_const(T& t) noexcept {
return t;
}
}
TEST_CASE("flat_multimap") {
SECTION("types") {
using map_t = flat_multimap<int, unsigned>;
static_assert(
std::is_same<map_t::key_type, int>::value,
"unit test static error");
static_assert(
std::is_same<map_t::mapped_type, unsigned>::value,
"unit test static error");
static_assert(
std::is_same<map_t::value_type, std::pair<int, unsigned>>::value,
"unit test static error");
static_assert(
std::is_same<map_t::size_type, std::size_t>::value,
"unit test static error");
static_assert(
std::is_same<map_t::difference_type, std::ptrdiff_t>::value,
"unit test static error");
static_assert(
std::is_same<map_t::reference, std::pair<int, unsigned>&>::value,
"unit test static error");
static_assert(
std::is_same<map_t::const_reference, const std::pair<int, unsigned>&>::value,
"unit test static error");
static_assert(
std::is_same<map_t::pointer, std::pair<int, unsigned>*>::value,
"unit test static error");
static_assert(
std::is_same<map_t::const_pointer, const std::pair<int, unsigned>*>::value,
"unit test static error");
}
SECTION("ctors") {
using alloc_t = dummy_allocator<
std::pair<int,unsigned>>;
using map_t = flat_multimap<
int,
unsigned,
std::less<int>,
std::vector<std::pair<int,unsigned>, alloc_t>>;
using map2_t = flat_multimap<
int,
unsigned,
std::greater<int>,
std::vector<std::pair<int,unsigned>, alloc_t>>;
using vec_t = std::vector<
std::pair<int,unsigned>, alloc_t>;
{
auto s0 = map_t();
auto s1 = map2_t(alloc_t());
auto s2 = map_t(std::less<int>());
auto s3 = map2_t(std::greater<int>(), alloc_t());
}
{
vec_t v{{1,30},{2,20},{3,10}};
auto s0 = map_t(v.cbegin(), v.cend());
auto s1 = map2_t(v.cbegin(), v.cend(), alloc_t());
auto s2 = map_t(v.cbegin(), v.cend(), std::less<int>());
auto s3 = map2_t(v.cbegin(), v.cend(), std::greater<int>(), alloc_t());
REQUIRE(vec_t(s0.begin(), s0.end()) == vec_t({{1,30},{2,20},{3,10}}));
REQUIRE(vec_t(s1.begin(), s1.end()) == vec_t({{3,10},{2,20},{1,30}}));
REQUIRE(vec_t(s2.begin(), s2.end()) == vec_t({{1,30},{2,20},{3,10}}));
REQUIRE(vec_t(s3.begin(), s3.end()) == vec_t({{3,10},{2,20},{1,30}}));
}
{
auto s0 = map_t({{0,1}, {1,2}});
auto s1 = map_t({{0,1}, {1,2}}, alloc_t());
auto s2 = map_t({{0,1}, {1,2}}, std::less<int>());
auto s3 = map_t({{0,1}, {1,2}}, std::less<int>(), alloc_t());
REQUIRE(vec_t(s0.begin(), s0.end()) == vec_t({{0,1},{1,2}}));
REQUIRE(vec_t(s1.begin(), s1.end()) == vec_t({{0,1},{1,2}}));
REQUIRE(vec_t(s2.begin(), s2.end()) == vec_t({{0,1},{1,2}}));
REQUIRE(vec_t(s3.begin(), s3.end()) == vec_t({{0,1},{1,2}}));
}
{
auto s0 = map_t{{0,1}, {1,2}};
auto s1 = s0;
REQUIRE(s0 == map_t{{0,1}, {1,2}});
REQUIRE(s1 == map_t{{0,1}, {1,2}});
auto s2 = std::move(s1);
REQUIRE(s1.empty());
REQUIRE(s2 == map_t{{0,1}, {1,2}});
auto s3 = map_t(s2, alloc_t(42));
REQUIRE(s2 == s3);
auto s4 = map_t(std::move(s3), alloc_t(21));
REQUIRE(s3.empty());
REQUIRE(s4 == map_t{{0,1}, {1,2}});
}
{
auto s0 = map_t{{0,1}, {1,2}};
map_t s1;
s1 = s0;
REQUIRE(s0 == map_t{{0,1}, {1,2}});
REQUIRE(s1 == map_t{{0,1}, {1,2}});
map_t s2;
s2 = std::move(s1);
REQUIRE(s0 == map_t{{0,1}, {1,2}});
REQUIRE(s1.empty());
REQUIRE(s2 == map_t{{0,1}, {1,2}});
map_t s3;
s3 = {{0,1}, {1,2}};
REQUIRE(s3 == map_t{{0,1}, {1,2}});
}
}
SECTION("capacity") {
using map_t = flat_multimap<int, unsigned>;
{
map_t s0;
REQUIRE(s0.empty());
REQUIRE_FALSE(s0.size());
REQUIRE(s0.max_size() == std::allocator<std::pair<int,unsigned>>().max_size());
s0.insert({2,42});
REQUIRE_FALSE(s0.empty());
REQUIRE(s0.size() == 1u);
REQUIRE(s0.max_size() == std::allocator<std::pair<int,unsigned>>().max_size());
s0.insert({2,84});
REQUIRE(s0.size() == 2u);
s0.insert({3,84});
REQUIRE(s0.size() == 3u);
s0.clear();
REQUIRE(s0.empty());
REQUIRE_FALSE(s0.size());
REQUIRE(s0.max_size() == std::allocator<std::pair<int,unsigned>>().max_size());
}
{
map_t s0;
REQUIRE(s0.capacity() == 0);
s0.reserve(42);
REQUIRE(s0.capacity() == 42);
s0.insert({{1,2},{2,3},{3,4}});
REQUIRE(s0.capacity() == 42);
s0.shrink_to_fit();
REQUIRE(s0.size() == 3);
REQUIRE(s0.capacity() == 3);
REQUIRE(s0 == map_t{{1,2},{2,3},{3,4}});
using alloc2_t = dummy_allocator<
std::pair<int, unsigned>>;
using map2_t = flat_multimap<
int,
unsigned,
std::less<int>,
std::deque<std::pair<int, unsigned>, alloc2_t>>;
map2_t s1;
s1.insert({{1,2},{2,3},{3,4}});
REQUIRE(s1 == map2_t{{1,2},{2,3},{3,4}});
}
}
SECTION("access") {
struct obj_t {
obj_t(int i) : i(i) {}
int i;
bool operator<(const obj_t& o) const {
return i < o.i;
}
bool operator==(const obj_t& o) const {
return i == o.i;
}
};
using map_t = flat_multimap<obj_t, unsigned>;
map_t s0;
obj_t k1(1);
s0[k1] = 42;
REQUIRE(s0[k1] == 42);
REQUIRE(s0 == map_t{{1,42}});
s0[1] = 84;
REQUIRE(s0[1] == 84);
REQUIRE(s0 == map_t{{1,84}});
s0[2] = 21;
REQUIRE(s0[2] == 21);
REQUIRE(s0 == map_t{{1,84},{2,21}});
REQUIRE(s0.at(1) == 84);
REQUIRE(my_as_const(s0).at(k1) == 84);
REQUIRE_THROWS_AS(s0.at(0), std::out_of_range);
REQUIRE_THROWS_AS(my_as_const(s0).at(0), std::out_of_range);
}
SECTION("inserts") {
struct obj_t {
obj_t(int i) : i(i) {}
int i;
bool operator<(const obj_t& o) const {
return i < o.i;
}
bool operator==(const obj_t& o) const {
return i == o.i;
}
};
using map_t = flat_multimap<obj_t, obj_t>;
{
map_t s0;
auto k1_42 = std::make_pair(1, 42);
auto k3_84 = std::make_pair(3, 84);
auto i0 = s0.insert(k1_42);
REQUIRE(s0 == map_t{{1,42}});
REQUIRE(i0 == s0.begin());
auto i1 = s0.insert(std::make_pair(1, obj_t(21)));
REQUIRE(s0 == map_t{{1,42},{1,21}});
REQUIRE(i1 == s0.begin() + 1);
auto i2 = s0.insert(std::make_pair(2, obj_t(42)));
REQUIRE(s0 == map_t{{1,42},{1,21},{2,42}});
REQUIRE(i2 == s0.begin() + 2);
auto i3 = s0.insert(s0.cend(), k3_84);
REQUIRE(i3 == s0.begin() + 3);
s0.insert(s0.cend(), std::make_pair(4, obj_t(84)));
auto i4 = s0.insert(s0.cend(), std::make_pair(0, obj_t(21)));
REQUIRE(i4 == s0.begin());
auto i5 = s0.emplace(5, 100500);
REQUIRE(i5 == s0.end() - 1);
REQUIRE(s0 == map_t{{0,21},{1,42},{1,21},{2,42},{3,84},{4,84},{5,100500}});
auto i6 = s0.emplace_hint(s0.cend(), 6, 100500);
REQUIRE(i6 == s0.end() - 1);
REQUIRE(s0 == map_t{{0,21},{1,42},{1,21},{2,42},{3,84},{4,84},{5,100500},{6,100500}});
}
}
SECTION("erasers") {
using map_t = flat_multimap<int, unsigned>;
{
map_t s0{{1,2},{2,3},{3,4}};
s0.clear();
REQUIRE(s0.empty());
}
{
map_t s0{{1,2},{2,3},{3,4}};
auto i = s0.erase(s0.find(2));
REQUIRE(i == s0.begin() + 1);
REQUIRE(s0 == map_t{{1,2},{3,4}});
}
{
map_t s0{{1,2},{2,3},{3,4}};
auto i = s0.erase(s0.begin() + 1, s0.end());
REQUIRE(i == s0.end());
REQUIRE(s0 == map_t{{1,2}});
}
{
map_t s0{{1,2},{2,3},{2,1},{3,4}};
REQUIRE(s0.erase(1) == 1);
REQUIRE(s0.erase(2) == 2);
REQUIRE(s0.erase(6) == 0);
REQUIRE(s0 == map_t{{3,4}});
}
{
map_t s0{{1,2},{2,3},{3,4}};
map_t s1{{2,3},{3,4},{5,6}};
s0.swap(s1);
REQUIRE(s0 == map_t{{2,3},{3,4},{5,6}});
REQUIRE(s1 == map_t{{1,2},{2,3},{3,4}});
swap(s1, s0);
REQUIRE(s0 == map_t{{1,2},{2,3},{3,4}});
REQUIRE(s1 == map_t{{2,3},{3,4},{5,6}});
}
}
SECTION("lookup") {
using map_t = flat_multimap<int, unsigned>;
{
map_t s0{{1,2},{2,3},{2,1},{3,4},{4,5},{5,6}};
REQUIRE(s0.count(3) == 1);
REQUIRE(s0.count(2) == 2);
REQUIRE_FALSE(s0.count(6));
REQUIRE(my_as_const(s0).count(5));
REQUIRE_FALSE(my_as_const(s0).count(0));
}
{
map_t s0{{1,2},{2,3},{3,4},{4,5},{5,6}};
REQUIRE(s0.find(2) == s0.begin() + 1);
REQUIRE(my_as_const(s0).find(3) == s0.cbegin() + 2);
REQUIRE(s0.find(6) == s0.end());
REQUIRE(my_as_const(s0).find(0) == s0.cend());
}
{
map_t s0{{1,2},{2,3},{2,1},{3,4},{4,5},{5,6}};
REQUIRE(s0.equal_range(2) == std::make_pair(s0.begin() + 1, s0.begin() + 3));
REQUIRE(s0.equal_range(6) == std::make_pair(s0.end(), s0.end()));
REQUIRE(my_as_const(s0).equal_range(2) == std::make_pair(s0.cbegin() + 1, s0.cbegin() + 3));
REQUIRE(my_as_const(s0).equal_range(0) == std::make_pair(s0.cbegin(), s0.cbegin()));
}
{
map_t s0{{0,1},{0,0},{3,2},{6,3}};
REQUIRE(s0.lower_bound(0) == s0.begin());
REQUIRE(s0.lower_bound(1) == s0.begin() + 2);
REQUIRE(s0.lower_bound(10) == s0.end());
REQUIRE(my_as_const(s0).lower_bound(-1) == s0.cbegin());
REQUIRE(my_as_const(s0).lower_bound(7) == s0.cbegin() + 4);
}
}
SECTION("observers") {
struct my_less {
int i;
my_less(int i) : i(i) {}
bool operator()(int l, int r) const {
return l < r;
}
};
using map_t = flat_multimap<int, unsigned, my_less>;
map_t s0(my_less(42));
REQUIRE(my_as_const(s0).key_comp().i == 42);
REQUIRE(my_as_const(s0).value_comp()({2,50},{4,20}));
}
SECTION("operators") {
using map_t = flat_multimap<int, unsigned>;
REQUIRE(map_t{{1,2},{3,4}} == map_t{{3,4},{1,2}});
REQUIRE_FALSE(map_t{{1,2},{3,4}} == map_t{{2,4},{1,2}});
REQUIRE_FALSE(map_t{{1,2},{3,4}} == map_t{{1,3},{1,2}});
REQUIRE_FALSE(map_t{{1,2},{3,4}} == map_t{{3,4},{1,2},{0,0}});
REQUIRE_FALSE(map_t{{1,2},{3,4}} != map_t{{3,4},{1,2}});
REQUIRE(map_t{{1,2},{3,4}} != map_t{{2,4},{1,2}});
REQUIRE(map_t{{1,2},{3,4}} != map_t{{1,3},{1,2}});
REQUIRE(map_t{{1,2},{3,4}} != map_t{{3,4},{1,2},{0,0}});
REQUIRE(map_t{{0,2},{3,4}} < map_t{{1,2},{3,4}});
REQUIRE(map_t{{1,1},{3,4}} < map_t{{1,2},{3,4}});
REQUIRE(map_t{{1,2},{3,4}} < map_t{{1,2},{3,4},{5,6}});
REQUIRE(map_t{{0,2},{3,4}} <= map_t{{1,2},{3,4}});
REQUIRE(map_t{{1,1},{3,4}} <= map_t{{1,2},{3,4}});
REQUIRE(map_t{{1,2},{3,4}} <= map_t{{1,2},{3,4},{5,6}});
REQUIRE(map_t{{1,2},{3,4}} > map_t{{0,2},{3,4}});
REQUIRE(map_t{{1,2},{3,4}} > map_t{{1,1},{3,4}});
REQUIRE(map_t{{1,2},{3,4},{5,6}} > map_t{{1,2},{3,4}});
REQUIRE(map_t{{1,2},{3,4}} >= map_t{{0,2},{3,4}});
REQUIRE(map_t{{1,2},{3,4}} >= map_t{{1,1},{3,4}});
REQUIRE(map_t{{1,2},{3,4},{5,6}} >= map_t{{1,2},{3,4}});
REQUIRE_FALSE(map_t{{1,2},{3,4}} < map_t{{1,2},{3,4}});
REQUIRE(map_t{{1,2},{3,4}} <= map_t{{1,2},{3,4}});
REQUIRE_FALSE(map_t{{1,2},{3,4}} > map_t{{1,2},{3,4}});
REQUIRE(map_t{{1,2},{3,4}} >= map_t{{1,2},{3,4}});
const map_t s0;
REQUIRE(s0 == s0);
REQUIRE_FALSE(s0 != s0);
REQUIRE_FALSE(s0 < s0);
REQUIRE_FALSE(s0 > s0);
REQUIRE(s0 <= s0);
REQUIRE(s0 >= s0);
}
}

View File

@@ -0,0 +1,428 @@
/*******************************************************************************
* This file is part of the "https://github.com/blackmatov/flat.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2019, by Matvey Cherevko (blackmatov@gmail.com)
******************************************************************************/
#define CATCH_CONFIG_FAST_COMPILE
#include <catch2/catch.hpp>
#include <deque>
#include <flat_hpp/flat_multiset.hpp>
using namespace flat_hpp;
namespace
{
template < typename T >
class dummy_allocator {
public:
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using value_type = T;
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;
template < typename U >
struct rebind { using other = dummy_allocator<U>; };
dummy_allocator() = default;
dummy_allocator(int i) : i(i) {}
template < typename U >
dummy_allocator(const dummy_allocator<U>& o) noexcept {
i = o.i;
}
T* allocate(std::size_t n) noexcept {
return static_cast<T*>(std::malloc(sizeof(T) * n));
}
void deallocate(T* p, std::size_t n) noexcept {
(void)n;
std::free(p);
}
template < typename U, typename... Args >
void construct(U* p, Args&&... args) {
::new((void*)p) U(std::forward<Args>(args)...);
}
void destroy(pointer p) {
p->~T();
}
int i = 0;
};
template < typename T, typename U >
bool operator==(const dummy_allocator<T>&, const dummy_allocator<U>&) noexcept {
return true;
}
template < typename T, typename U >
bool operator!=(const dummy_allocator<T>& l, const dummy_allocator<U>& r) noexcept {
return !(l == r);
}
template < typename T >
constexpr std::add_const_t<T>& my_as_const(T& t) noexcept {
return t;
}
}
TEST_CASE("flat_multiset") {
SECTION("types") {
using set_t = flat_multiset<int>;
static_assert(
std::is_same<set_t::key_type, int>::value,
"unit test static error");
static_assert(
std::is_same<set_t::value_type, int>::value,
"unit test static error");
static_assert(
std::is_same<set_t::size_type, std::size_t>::value,
"unit test static error");
static_assert(
std::is_same<set_t::difference_type, std::ptrdiff_t>::value,
"unit test static error");
static_assert(
std::is_same<set_t::reference, int&>::value,
"unit test static error");
static_assert(
std::is_same<set_t::const_reference, const int&>::value,
"unit test static error");
static_assert(
std::is_same<set_t::pointer, int*>::value,
"unit test static error");
static_assert(
std::is_same<set_t::const_pointer, const int*>::value,
"unit test static error");
}
SECTION("ctors") {
using alloc_t = dummy_allocator<int>;
using set_t = flat_multiset<int, std::less<int>, std::vector<int, alloc_t>>;
using set2_t = flat_multiset<int, std::greater<int>, std::vector<int, alloc_t>>;
using vec_t = std::vector<int>;
{
auto s0 = set_t();
auto s1 = set2_t(alloc_t());
auto s2 = set_t(std::less<int>());
auto s3 = set2_t(std::greater<int>(), alloc_t());
}
{
vec_t v{1,2,3};
auto s0 = set_t(v.cbegin(), v.cend());
auto s1 = set2_t(v.cbegin(), v.cend(), alloc_t());
auto s2 = set_t(v.cbegin(), v.cend(), std::less<int>());
auto s3 = set2_t(v.cbegin(), v.cend(), std::greater<int>(), alloc_t());
REQUIRE(vec_t(s0.begin(), s0.end()) == vec_t({1,2,3}));
REQUIRE(vec_t(s1.begin(), s1.end()) == vec_t({3,2,1}));
REQUIRE(vec_t(s2.begin(), s2.end()) == vec_t({1,2,3}));
REQUIRE(vec_t(s3.begin(), s3.end()) == vec_t({3,2,1}));
}
{
auto s0 = set_t({0,1,2});
auto s1 = set2_t({0,1,2}, alloc_t());
auto s2 = set_t({0,1,2}, std::less<int>());
auto s3 = set2_t({0,1,2}, std::greater<int>(), alloc_t());
REQUIRE(vec_t(s0.begin(), s0.end()) == vec_t({0,1,2}));
REQUIRE(vec_t(s1.begin(), s1.end()) == vec_t({2,1,0}));
REQUIRE(vec_t(s2.begin(), s2.end()) == vec_t({0,1,2}));
REQUIRE(vec_t(s3.begin(), s3.end()) == vec_t({2,1,0}));
}
{
auto s0 = set_t{0,1,2};
auto s1 = s0;
REQUIRE(s0 == set_t{0,1,2});
REQUIRE(s1 == set_t{0,1,2});
auto s2 = std::move(s1);
REQUIRE(s1.empty());
REQUIRE(s2 == set_t{0,1,2});
auto s3 = set_t(s2, alloc_t(42));
REQUIRE(s2 == s3);
auto s4 = set_t(std::move(s3), alloc_t(21));
REQUIRE(s3.empty());
REQUIRE(s4 == set_t{0,1,2});
}
{
auto s0 = set_t{0,1,2};
set_t s1;
s1 = s0;
REQUIRE(s0 == set_t{0,1,2});
REQUIRE(s1 == set_t{0,1,2});
set_t s2;
s2 = std::move(s1);
REQUIRE(s0 == set_t{0,1,2});
REQUIRE(s1.empty());
REQUIRE(s2 == set_t{0,1,2});
set_t s3;
s3 = {1,2,3};
REQUIRE(s3 == set_t{1,2,3});
}
}
SECTION("capacity") {
using set_t = flat_multiset<int>;
{
set_t s0;
REQUIRE(s0.empty());
REQUIRE_FALSE(s0.size());
REQUIRE(s0.max_size() == std::allocator<int>().max_size());
s0.insert(42);
REQUIRE_FALSE(s0.empty());
REQUIRE(s0.size() == 1u);
REQUIRE(s0.max_size() == std::allocator<int>().max_size());
s0.insert(42);
REQUIRE(s0.size() == 2u);
s0.insert(84);
REQUIRE(s0.size() == 3u);
s0.clear();
REQUIRE(s0.empty());
REQUIRE_FALSE(s0.size());
REQUIRE(s0.max_size() == std::allocator<int>().max_size());
}
{
set_t s0;
REQUIRE(s0.capacity() == 0);
s0.reserve(42);
REQUIRE(s0.capacity() == 42);
s0.insert({1,2,3});
REQUIRE(s0.capacity() == 42);
s0.shrink_to_fit();
REQUIRE(s0.size() == 3);
REQUIRE(s0.capacity() == 3);
REQUIRE(s0 == set_t{1,2,3});
using alloc2_t = dummy_allocator<int>;
using set2_t = flat_multiset<
int,
std::less<int>,
std::deque<int, alloc2_t>>;
set2_t s1;
s1.insert({1,2,3});
REQUIRE(s1 == set2_t{1,2,3});
}
}
SECTION("inserts") {
struct obj_t {
obj_t(int i) : i(i) {}
int i;
bool operator<(const obj_t& o) const {
return i < o.i;
}
bool operator==(const obj_t& o) const {
return i == o.i;
}
};
using set_t = flat_multiset<obj_t>;
{
set_t s0;
auto i0 = s0.insert(1); // 1
REQUIRE(s0 == set_t{1});
REQUIRE(i0 == s0.begin());
auto i1 = s0.insert(obj_t(1)); // 1,1
REQUIRE(s0 == set_t{1,1});
REQUIRE(i1 == s0.begin() + 1);
auto i2 = s0.insert(obj_t(2)); // 1,1,2
REQUIRE(s0 == set_t{1,1,2});
REQUIRE(i2 == s0.begin() + 2);
auto o2 = obj_t(2);
auto i3 = s0.insert(o2); // 1,1,2,2
REQUIRE(i3 == s0.begin() + 3);
s0.insert(s0.cbegin(), 1); // 1,1,1,2,2
s0.insert(s0.cbegin(), 2); // 1,1,1,2,2,2
s0.insert(s0.cend(), 1); // 1,1,1,1,2,2,2
s0.insert(s0.cend(), 2); // 1,1,1,1,2,2,2,2
REQUIRE(s0 == set_t{1,1,1,1,2,2,2,2});
s0.insert(s0.cbegin(), 0); // 0,1,1,1,1,2,2,2,2
REQUIRE(s0 == set_t{0,1,1,1,1,2,2,2,2});
s0.insert(s0.cend(), 3); // 0,1,1,1,1,2,2,2,2,3
REQUIRE(s0 == set_t{0,1,1,1,1,2,2,2,2,3});
s0.insert(s0.cbegin(), 4); // 0,1,1,1,1,2,2,2,2,3,4
s0.insert(s0.cend(), -1); // -1,0,1,1,1,1,2,2,2,2,3,4
REQUIRE(s0 == set_t{-1,0,1,1,1,1,2,2,2,2,3,4});
s0.insert(s0.cbegin() + 2, obj_t(5)); // -1,0,1,1,1,1,2,2,2,2,3,4,5
REQUIRE(s0 == set_t{-1,0,1,1,1,1,2,2,2,2,3,4,5});
s0.insert(s0.cbegin(), obj_t(-2)); // -2,-1,0,1,1,1,1,2,2,2,2,3,4,5
REQUIRE(s0 == set_t{-2,-1,0,1,1,1,1,2,2,2,2,3,4,5});
}
{
set_t s0;
auto e0 = s0.emplace(3); // 3
REQUIRE(s0 == set_t{3});
REQUIRE(e0 == s0.begin());
auto e1 = s0.emplace(obj_t(3)); // 3,3
REQUIRE(e1 == s0.begin() + 1);
auto e2 = s0.emplace(4); // 3,3,4
REQUIRE(s0 == set_t{3,3,4});
REQUIRE(e2 == s0.begin() + 2);
auto e3 = s0.emplace_hint(s0.cbegin(), 1); // 1,3,3,4
REQUIRE(e3 == s0.begin());
auto e4 = s0.emplace_hint(s0.cend(), 2); // 1,2,3,3,4
REQUIRE(e4 == s0.begin() + 1);
s0.emplace_hint(s0.cbegin(), 5); // 1,2,3,3,4,5
s0.emplace_hint(s0.cend(), 6); // 1,2,3,3,4,5,6
REQUIRE(s0 == set_t{1,2,3,3,4,5,6});
}
}
SECTION("erasers") {
using set_t = flat_multiset<int>;
{
set_t s0{1,2,3,4,5};
s0.clear();
REQUIRE(s0.empty());
}
{
set_t s0{1,2,3,4,5};
auto i = s0.erase(s0.find(3));
REQUIRE(i == s0.begin() + 2);
REQUIRE(s0 == set_t{1,2,4,5});
}
{
set_t s0{1,2,3,4,5};
auto i = s0.erase(s0.begin() + 2, s0.end());
REQUIRE(i == s0.end());
REQUIRE(s0 == set_t{1,2});
}
{
set_t s0{1,2,3,3,4,5};
REQUIRE(s0.erase(2) == 1);
REQUIRE(s0.erase(3) == 2);
REQUIRE(s0.erase(6) == 0);
REQUIRE(s0 == set_t{1,4,5});
}
{
set_t s0{1,2,3};
set_t s1{3,4,5};
s0.swap(s1);
REQUIRE(s0 == set_t{3,4,5});
REQUIRE(s1 == set_t{1,2,3});
swap(s1, s0);
REQUIRE(s0 == set_t{1,2,3});
REQUIRE(s1 == set_t{3,4,5});
}
}
SECTION("lookup") {
using set_t = flat_multiset<int>;
{
set_t s0{1,2,3,3,4,5};
REQUIRE(s0.count(2) == 1);
REQUIRE(s0.count(3) == 2);
REQUIRE_FALSE(s0.count(6));
REQUIRE(my_as_const(s0).count(5));
REQUIRE_FALSE(my_as_const(s0).count(0));
}
{
set_t s0{1,2,3,4,5};
REQUIRE(s0.find(2) == s0.begin() + 1);
REQUIRE(my_as_const(s0).find(3) == s0.cbegin() + 2);
REQUIRE(s0.find(6) == s0.end());
REQUIRE(my_as_const(s0).find(0) == s0.cend());
}
{
set_t s0{1,2,3,3,4,5};
REQUIRE(s0.equal_range(3) == std::make_pair(s0.begin() + 2, s0.begin() + 4));
REQUIRE(s0.equal_range(6) == std::make_pair(s0.end(), s0.end()));
REQUIRE(my_as_const(s0).equal_range(3) == std::make_pair(s0.cbegin() + 2, s0.cbegin() + 4));
REQUIRE(my_as_const(s0).equal_range(0) == std::make_pair(s0.cbegin(), s0.cbegin()));
}
{
set_t s0{0,0,3,6,9};
REQUIRE(s0.lower_bound(0) == s0.begin());
REQUIRE(s0.lower_bound(1) == s0.begin() + 2);
REQUIRE(s0.lower_bound(10) == s0.end());
REQUIRE(my_as_const(s0).lower_bound(-1) == s0.cbegin());
REQUIRE(my_as_const(s0).lower_bound(7) == s0.cbegin() + 4);
}
}
SECTION("observers") {
struct my_less {
int i;
my_less(int i) : i(i) {}
bool operator()(int l, int r) const {
return l < r;
}
};
using set_t = flat_multiset<int, my_less>;
set_t s0(my_less(42));
REQUIRE(my_as_const(s0).key_comp().i == 42);
REQUIRE(my_as_const(s0).value_comp().i == 42);
}
SECTION("operators") {
using set_t = flat_multiset<int>;
REQUIRE(set_t{1,2,3} == set_t{3,2,1});
REQUIRE_FALSE(set_t{1,2,3} == set_t{3,2,4});
REQUIRE_FALSE(set_t{1,2,3} == set_t{1,2,3,4});
REQUIRE(set_t{1,2,3} != set_t{3,2,4});
REQUIRE_FALSE(set_t{1,2,3} != set_t{3,2,1});
REQUIRE(set_t{2,3,4,6} < set_t{2,3,5});
REQUIRE(set_t{2,3,4,6} <= set_t{2,3,5});
REQUIRE_FALSE(set_t{2,3,5} < set_t{2,3,4,6});
REQUIRE_FALSE(set_t{2,3,5} <= set_t{2,3,4,6});
REQUIRE_FALSE(set_t{2,3,4,6} > set_t{2,3,5});
REQUIRE_FALSE(set_t{2,3,4,6} >= set_t{2,3,5});
REQUIRE(set_t{2,3,5} > set_t{2,3,4,6});
REQUIRE(set_t{2,3,5} >= set_t{2,3,4,6});
REQUIRE_FALSE(set_t{1,2,3} < set_t{1,2,3});
REQUIRE(set_t{1,2,3} <= set_t{1,2,3});
REQUIRE_FALSE(set_t{1,2,3} > set_t{1,2,3});
REQUIRE(set_t{1,2,3} >= set_t{1,2,3});
const set_t s0;
REQUIRE(s0 == s0);
REQUIRE_FALSE(s0 != s0);
REQUIRE_FALSE(s0 < s0);
REQUIRE_FALSE(s0 > s0);
REQUIRE(s0 <= s0);
REQUIRE(s0 >= s0);
}
}