Files
openide/python/helpers/pydev/_pydevd_bundle/pydevd_tables.py
ekaterina.itsenko a6a827f1df [pycharm] PY-80835 PY-81089 Debugger: move cursor and add data type
Merge-request: IJ-MR-162745
Merged-by: Ekaterina Itsenko <ekaterina.itsenko@jetbrains.com>
(cherry picked from commit 4481d3e22b0c597c5d72eff21100feb94182977c)

GitOrigin-RevId: cb7a8bfce45fec4525e99a29e74ce342485bdf10
2025-05-21 18:01:21 +00:00

151 lines
6.8 KiB
Python

# Copyright 2000-2025 JetBrains s.r.o. Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file.
from _pydevd_bundle import pydevd_vars
from _pydevd_bundle.pydevd_constants import NEXT_VALUE_SEPARATOR
from _pydevd_bundle.pydevd_xml import ExceptionOnEvaluate
from _pydevd_bundle.tables.images.pydevd_image_loader import load_image_chunk
from typing import Optional
class TableCommandType:
DF_INFO = "DF_INFO"
SLICE = "SLICE"
SLICE_CSV = "SLICE_CSV"
DESCRIBE = "DF_DESCRIBE"
VISUALIZATION_DATA = "VISUALIZATION_DATA"
IMAGE_START_CHUNK_LOAD = "IMAGE_START_CHUNK_LOAD"
IMAGE_CHUNK_LOAD = "IMAGE_CHUNK_LOAD"
def is_error_on_eval(val):
try:
# This should be faster than isinstance (but we have to protect against not
# having a '__class__' attribute).
is_exception_on_eval = val.__class__ == ExceptionOnEvaluate
except:
is_exception_on_eval = False
return is_exception_on_eval
def exec_image_table_command(init_command, command_type, offset, image_id, f_globals, f_locals):
# type: (str, str, Optional[int], Optional[str], dict, dict) -> (bool, str)
table = pydevd_vars.eval_in_context(init_command, f_globals, f_locals)
is_exception_on_eval = is_error_on_eval(table)
if is_exception_on_eval:
return False, table.result
image_provider = __get_image_provider(table)
if not image_provider:
raise RuntimeError('No image provider for: {}'.format(type(table)))
if command_type == TableCommandType.IMAGE_START_CHUNK_LOAD:
return True, image_provider.create_image(table)
return True, load_image_chunk(offset, image_id)
def exec_table_command(init_command, command_type, start_index, end_index, format, f_globals,
f_locals):
# type: (str, str, [int, None], [int, None], [str, None], dict, dict) -> (bool, str)
table = pydevd_vars.eval_in_context(init_command, f_globals, f_locals)
is_exception_on_eval = is_error_on_eval(table)
if is_exception_on_eval:
return False, table.result
table_provider = __get_table_provider(table)
if not table_provider:
raise RuntimeError('No table data provider for: {}'.format(type(table)))
res = []
if command_type == TableCommandType.DF_INFO:
res.append(table_provider.get_type(table))
res.append(NEXT_VALUE_SEPARATOR)
res.append(table_provider.get_shape(table))
res.append(NEXT_VALUE_SEPARATOR)
res.append(table_provider.get_head(table))
res.append(NEXT_VALUE_SEPARATOR)
res.append(table_provider.get_column_types(table))
elif command_type == TableCommandType.DESCRIBE:
res.append(table_provider.get_column_descriptions(table))
elif command_type == TableCommandType.VISUALIZATION_DATA:
res.append(table_provider.get_value_occurrences_count(table))
res.append(NEXT_VALUE_SEPARATOR)
elif command_type == TableCommandType.SLICE:
res.append(table_provider.get_data(table, False, start_index, end_index, format))
elif command_type == TableCommandType.SLICE_CSV:
res.append(table_provider.get_data(table, True, start_index, end_index, format))
return True, ''.join(res)
def __get_type_name(table):
table_data_type = type(table)
table_data_type_name = '{}.{}'.format(table_data_type.__module__, table_data_type.__name__)
return table_data_type_name
# noinspection PyUnresolvedReferences
def __get_table_provider(output):
# type: (str) -> Any
type_qualified_name = __get_type_name(output)
numpy_based_type_qualified_names = ['tensorflow.python.framework.ops.EagerTensor',
'tensorflow.python.ops.resource_variable_ops.ResourceVariable',
'tensorflow.python.framework.sparse_tensor.SparseTensor',
'torch.Tensor']
table_provider = None
if type_qualified_name in ['pandas.core.frame.DataFrame',
'pandas.core.series.Series',
'geopandas.geoseries.GeoSeries',
'geopandas.geodataframe.GeoDataFrame',
'pandera.typing.pandas.DataFrame']:
import _pydevd_bundle.tables.pydevd_pandas as table_provider
# dict is needed for sort commands
elif type_qualified_name == 'builtins.dict':
table_type_name = __get_type_name(output['data'])
if table_type_name in numpy_based_type_qualified_names:
import _pydevd_bundle.tables.pydevd_numpy_based as table_provider
else:
import _pydevd_bundle.tables.pydevd_numpy as table_provider
elif type_qualified_name == 'numpy.ndarray' or type_qualified_name == 'numpy.rec.recarray':
import _pydevd_bundle.tables.pydevd_numpy as table_provider
elif type_qualified_name in numpy_based_type_qualified_names:
import _pydevd_bundle.tables.pydevd_numpy_based as table_provider
elif type_qualified_name.startswith('polars') and (
type_qualified_name.endswith('DataFrame')
or type_qualified_name.endswith('Series')):
import _pydevd_bundle.tables.pydevd_polars as table_provider
elif type_qualified_name == 'datasets.arrow_dataset.Dataset':
import _pydevd_bundle.tables.pydevd_dataset as table_provider
return table_provider
# noinspection PyUnresolvedReferences
def __get_image_provider(output):
# type: (str) -> Any
type_qualified_name = __get_type_name(output)
numpy_based_type_qualified_names = ['tensorflow.python.framework.ops.EagerTensor',
'tensorflow.python.ops.resource_variable_ops.ResourceVariable',
'tensorflow.python.framework.sparse_tensor.SparseTensor',
'torch.Tensor']
image_provider = None
if type_qualified_name == 'builtins.dict':
table_type_name = __get_type_name(output['data'])
if table_type_name in numpy_based_type_qualified_names:
import _pydevd_bundle.tables.images.pydevd_numpy_based_image as image_provider
else:
import _pydevd_bundle.tables.images.pydevd_numpy_image as image_provider
elif type_qualified_name in numpy_based_type_qualified_names:
import _pydevd_bundle.tables.images.pydevd_numpy_based_image as image_provider
elif type_qualified_name == 'numpy.ndarray':
import _pydevd_bundle.tables.images.pydevd_numpy_image as image_provider
elif type_qualified_name in ['PIL.Image.Image', 'PIL.PngImagePlugin.PngImageFile', 'PIL.JpegImagePlugin.JpegImageFile']:
import _pydevd_bundle.tables.images.pydevd_pillow_image as image_provider
elif type_qualified_name == 'matplotlib.figure.Figure':
import _pydevd_bundle.tables.images.pydevd_matplotlib_image as image_provider
return image_provider