mirror of
https://github.com/BlackMATov/vmath.hpp.git
synced 2025-12-15 12:39:47 +07:00
276 lines
9.7 KiB
C++
276 lines
9.7 KiB
C++
/*******************************************************************************
|
|
* This file is part of the "https://github.com/blackmatov/vmath.hpp"
|
|
* For conditions of distribution and use, see copyright notice in LICENSE.md
|
|
* Copyright (C) 2020, by Matvey Cherevko (blackmatov@gmail.com)
|
|
******************************************************************************/
|
|
|
|
#include <vmath.hpp/vmath_mat_fun.hpp>
|
|
#include <vmath.hpp/vmath_mat_ext.hpp>
|
|
|
|
#define CATCH_CONFIG_FAST_COMPILE
|
|
#include <catch2/catch.hpp>
|
|
|
|
namespace
|
|
{
|
|
using namespace vmath_hpp;
|
|
|
|
template < typename T, int Size >
|
|
constexpr mat<T, Size> generate_frank_matrix() {
|
|
mat<T, Size> m;
|
|
for ( int i = 1; i <= Size; ++i ) {
|
|
for ( int j = 1; j <= Size; ++j ) {
|
|
if ( j < i - Size ) {
|
|
m[i - 1][j - 1] = 0;
|
|
} else if ( j == (i - 1) ) {
|
|
m[i - 1][j - 1] = Size + 1 - i;
|
|
} else {
|
|
m[i - 1][j - 1] = Size + 1 - j;
|
|
}
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
template < typename T >
|
|
class approx2 {
|
|
public:
|
|
constexpr explicit approx2(T v) : value_(v) {}
|
|
constexpr explicit approx2(const vec<T, 2>& v) : value_(v) {}
|
|
constexpr explicit approx2(T x, T y) : value_(x, y) {}
|
|
|
|
friend constexpr bool operator==(const vec<T, 2>& l, const approx2& r) {
|
|
return (r.value_.x < l.x + epsilon)
|
|
&& (l.x < r.value_.x + epsilon)
|
|
&& (r.value_.y < l.y + epsilon)
|
|
&& (l.y < r.value_.y + epsilon);
|
|
}
|
|
private:
|
|
vec<T, 2> value_;
|
|
static constexpr T epsilon = std::numeric_limits<T>::epsilon() * 100;
|
|
};
|
|
|
|
template < typename T >
|
|
class approx3 {
|
|
public:
|
|
constexpr explicit approx3(T v) : value_(v) {}
|
|
constexpr explicit approx3(const vec<T, 3>& v) : value_(v) {}
|
|
constexpr explicit approx3(T x, T y, T z) : value_(x, y, z) {}
|
|
|
|
friend constexpr bool operator==(const vec<T, 3>& l, const approx3& r) {
|
|
return (r.value_.x < l.x + epsilon)
|
|
&& (l.x < r.value_.x + epsilon)
|
|
&& (r.value_.y < l.y + epsilon)
|
|
&& (l.y < r.value_.y + epsilon)
|
|
&& (r.value_.z < l.z + epsilon)
|
|
&& (l.z < r.value_.z + epsilon);
|
|
}
|
|
private:
|
|
vec<T, 3> value_;
|
|
static constexpr T epsilon = std::numeric_limits<T>::epsilon() * 100;
|
|
};
|
|
|
|
template < typename T >
|
|
class approx4 {
|
|
public:
|
|
constexpr explicit approx4(T v) : value_(v) {}
|
|
constexpr explicit approx4(const vec<T, 4>& v) : value_(v) {}
|
|
constexpr explicit approx4(T x, T y, T z, T w) : value_(x, y, z, w) {}
|
|
|
|
friend constexpr bool operator==(const vec<T, 4>& l, const approx4& r) {
|
|
return (r.value_.x < l.x + epsilon)
|
|
&& (l.x < r.value_.x + epsilon)
|
|
&& (r.value_.y < l.y + epsilon)
|
|
&& (l.y < r.value_.y + epsilon)
|
|
&& (r.value_.z < l.z + epsilon)
|
|
&& (l.z < r.value_.z + epsilon)
|
|
&& (r.value_.w < l.w + epsilon)
|
|
&& (l.w < r.value_.w + epsilon);
|
|
}
|
|
private:
|
|
vec<T, 4> value_;
|
|
static constexpr T epsilon = std::numeric_limits<T>::epsilon() * 100;
|
|
};
|
|
|
|
template < typename T >
|
|
class approx2x2 {
|
|
public:
|
|
constexpr explicit approx2x2(const mat<T, 2>& v) : value_(v) {}
|
|
|
|
friend constexpr bool operator==(const mat<T, 2>& l, const approx2x2& r) {
|
|
return l[0] == approx2(r.value_[0])
|
|
&& l[1] == approx2(r.value_[1]);
|
|
}
|
|
private:
|
|
mat<T, 2> value_;
|
|
};
|
|
|
|
template < typename T >
|
|
class approx3x3 {
|
|
public:
|
|
constexpr explicit approx3x3(const mat<T, 3>& v) : value_(v) {}
|
|
|
|
friend constexpr bool operator==(const mat<T, 3>& l, const approx3x3& r) {
|
|
return l[0] == approx3(r.value_[0])
|
|
&& l[1] == approx3(r.value_[1])
|
|
&& l[2] == approx3(r.value_[2]);
|
|
}
|
|
private:
|
|
mat<T, 3> value_;
|
|
};
|
|
|
|
template < typename T >
|
|
class approx4x4 {
|
|
public:
|
|
constexpr explicit approx4x4(const mat<T, 4>& v) : value_(v) {}
|
|
|
|
friend constexpr bool operator==(const mat<T, 4>& l, const approx4x4& r) {
|
|
return l[0] == approx4(r.value_[0])
|
|
&& l[1] == approx4(r.value_[1])
|
|
&& l[2] == approx4(r.value_[2])
|
|
&& l[3] == approx4(r.value_[3]);
|
|
}
|
|
private:
|
|
mat<T, 4> value_;
|
|
};
|
|
}
|
|
|
|
TEST_CASE("vmath/mat_fun") {
|
|
SECTION("Operators") {
|
|
STATIC_REQUIRE(-mat2i(1,2,3,4) == mat2i(-1,-2,-3,-4));
|
|
|
|
STATIC_REQUIRE(mat2i(1,2,3,4) + 2 == mat2i(3,4,5,6));
|
|
STATIC_REQUIRE(mat2i(1,2,3,4) - 2 == mat2i(-1,0,1,2));
|
|
STATIC_REQUIRE(mat2i(1,2,3,4) * 2 == mat2i(2,4,6,8));
|
|
STATIC_REQUIRE(mat2i(1,2,3,4) / 2 == mat2i(0,1,1,2));
|
|
|
|
STATIC_REQUIRE(4 + mat2i(1,2,3,4) == mat2i(5,6,7,8));
|
|
STATIC_REQUIRE(4 - mat2i(1,2,3,4) == mat2i(3,2,1,0));
|
|
STATIC_REQUIRE(4 * mat2i(1,2,3,4) == mat2i(4,8,12,16));
|
|
STATIC_REQUIRE(4 / mat2i(1,2,3,4) == mat2i(4,2,1,1));
|
|
|
|
STATIC_REQUIRE(mat2i(1,2,3,4) + mat2i(5,6,7,8) == mat2i(6,8,10,12));
|
|
STATIC_REQUIRE(mat2i(1,2,3,4) - mat2i(5,6,7,8) == mat2i(-4,-4,-4,-4));
|
|
STATIC_REQUIRE(mat2i(5,6,7,8) / mat2i(1,2,3,4) == mat2i(5,3,2,2));
|
|
|
|
STATIC_REQUIRE(mat2i() * mat2i() == mat2i());
|
|
STATIC_REQUIRE(mat3i() * mat3i() == mat3i());
|
|
|
|
STATIC_REQUIRE(vec2i(1,2) * mat2i() == vec2i(1,2));
|
|
STATIC_REQUIRE(vec3i(1,2,3) * mat3i() == vec3i(1,2,3));
|
|
STATIC_REQUIRE(vec4i(1,2,3,4) * mat4i() == vec4i(1,2,3,4));
|
|
|
|
{
|
|
mat2i v{1,2,3,4};
|
|
REQUIRE(&v == &(v += 3));
|
|
REQUIRE(v == mat2i{4,5,6,7});
|
|
REQUIRE(&v == &(v += mat2i{1,2,3,4}));
|
|
REQUIRE(v == mat2i{5,7,9,11});
|
|
}
|
|
{
|
|
mat2i v{4,5,6,7};
|
|
REQUIRE(&v == &(v -= 3));
|
|
REQUIRE(v == mat2i{1,2,3,4});
|
|
REQUIRE(&v == &(v -= mat2i{2,4,6,8}));
|
|
REQUIRE(v == mat2i{-1,-2,-3,-4});
|
|
}
|
|
{
|
|
mat2i v{1,2,3,4};
|
|
REQUIRE(&v == &(v *= 3));
|
|
REQUIRE(v == mat2i{3,6,9,12});
|
|
}
|
|
{
|
|
mat2i v{6,18,36,60};
|
|
REQUIRE(&v == &(v /= 2));
|
|
REQUIRE(v == mat2i{3,9,18,30});
|
|
REQUIRE(&v == &(v /= mat2i{3,4,3,10}));
|
|
REQUIRE(v == mat2i{1,2,6,3});
|
|
}
|
|
|
|
{
|
|
vec4f v{0.f, 0.f, 0.f, 1.f};
|
|
REQUIRE(&v == &(v *= translate(1.f,2.f,3.f)));
|
|
REQUIRE(v == approx4(1.f,2.f,3.f,1.f));
|
|
}
|
|
{
|
|
vec3f v{1.f, 2.f, 3.f};
|
|
REQUIRE(&v == &(v *= mat3f(scale(2.f,3.f,4.f))));
|
|
REQUIRE(v == approx3(2.f,6.f,12.f));
|
|
}
|
|
{
|
|
mat4f v = translate(1.f, 2.f, 3.f);
|
|
REQUIRE(&v == &(v *= translate(1.f,2.f,3.f)));
|
|
REQUIRE(v == approx4x4(translate(2.f,4.f,6.f)));
|
|
}
|
|
{
|
|
mat3f v = mat3f(scale(1.f, 2.f, 3.f));
|
|
REQUIRE(&v == &(v *= mat3f(scale(2.f,3.f,4.f))));
|
|
REQUIRE(v == approx3x3(mat3f(scale(2.f,6.f,12.f))));
|
|
}
|
|
}
|
|
|
|
SECTION("Matrix Functions") {
|
|
{
|
|
STATIC_REQUIRE(transpose(mat2i(
|
|
1, 2,
|
|
3, 4
|
|
)) == mat2i(
|
|
1, 3,
|
|
2, 4
|
|
));
|
|
|
|
STATIC_REQUIRE(transpose(mat3i(
|
|
1, 2, 3,
|
|
4, 5, 6,
|
|
7, 8, 9
|
|
)) == mat3i(
|
|
1, 4, 7,
|
|
2, 5, 8,
|
|
3, 6, 9
|
|
));
|
|
|
|
STATIC_REQUIRE(transpose(mat4i(
|
|
1, 2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 16
|
|
)) == mat4i(
|
|
1, 5, 9, 13,
|
|
2, 6, 10, 14,
|
|
3, 7, 11, 15,
|
|
4, 8, 12, 16
|
|
));
|
|
}
|
|
{
|
|
constexpr mat2i m2{1,2,3,4};
|
|
constexpr mat3i m3{1,2,3,4,5,6,7,8,9};
|
|
constexpr mat4i m4{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
|
|
STATIC_REQUIRE(determinant(m2) == determinant(transpose(m2)));
|
|
STATIC_REQUIRE(determinant(m3) == determinant(transpose(m3)));
|
|
STATIC_REQUIRE(determinant(m4) == determinant(transpose(m4)));
|
|
|
|
STATIC_REQUIRE(determinant(generate_frank_matrix<int, 2>()) == 1);
|
|
STATIC_REQUIRE(determinant(generate_frank_matrix<int, 3>()) == 1);
|
|
STATIC_REQUIRE(determinant(generate_frank_matrix<int, 4>()) == 1);
|
|
|
|
STATIC_REQUIRE(determinant(transpose(generate_frank_matrix<int, 2>())) == 1);
|
|
STATIC_REQUIRE(determinant(transpose(generate_frank_matrix<int, 3>())) == 1);
|
|
STATIC_REQUIRE(determinant(transpose(generate_frank_matrix<int, 4>())) == 1);
|
|
}
|
|
{
|
|
STATIC_REQUIRE(inverse(mat2i()) == mat2i());
|
|
STATIC_REQUIRE(inverse(mat3i()) == mat3i());
|
|
STATIC_REQUIRE(inverse(mat4i()) == mat4i());
|
|
|
|
STATIC_REQUIRE(inverse(mat2f(0.5)) == mat2f(2.f));
|
|
STATIC_REQUIRE(inverse(mat3f(0.5)) == mat3f(2.f));
|
|
STATIC_REQUIRE(inverse(mat4f(0.5)) == mat4f(2.f));
|
|
|
|
STATIC_REQUIRE(inverse(translate(1.f,2.f,3.f)) == approx4x4(translate(-1.f,-2.f,-3.f)));
|
|
|
|
REQUIRE(inverse(rotate(0.5f,normalize(vec3f{1.f,2.f,3.f}))) == approx4x4(rotate(-0.5f,normalize(vec3f{1.f,2.f,3.f}))));
|
|
REQUIRE(inverse(mat3f(rotate(0.5f,normalize(vec3f{1.f,2.f,3.f})))) == approx3x3(mat3f(rotate(-0.5f,normalize(vec3f{1.f,2.f,3.f})))));
|
|
REQUIRE(inverse(mat2f(rotate(0.5f,vec3f{0,0,1}))) == approx2x2(mat2f(rotate(-0.5f,vec3f{0,0,1}))));
|
|
}
|
|
}
|
|
}
|