translate/rotate/scale matrix functions

This commit is contained in:
BlackMATov
2020-11-24 21:51:27 +07:00
parent caf6ba65b4
commit d1aa48bd4e
2 changed files with 223 additions and 0 deletions

View File

@@ -0,0 +1,120 @@
/*******************************************************************************
* This file is part of the "https://github.com/blackmatov/vmath.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2020, by Matvey Cherevko (blackmatov@gmail.com)
******************************************************************************/
#pragma once
#include "vmath_fwd.hpp"
#include "vmath_fun.hpp"
#include "vmath_mat.hpp"
#include "vmath_mat_fun.hpp"
namespace vmath_hpp
{
// identity
template < typename T >
mat<T, 4> identity() {
return {
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1}};
}
// translate
template < typename T >
mat<T, 4> translate(T x, T y, T z) {
return {
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{x, y, z, 1}};
}
template < typename T >
mat<T, 4> translate(const vec<T, 3>& xyz) {
return translate(xyz.x, xyz.y, xyz.z);
}
template < typename T >
mat<T, 4> translate(const mat<T, 4>& m, T x, T y, T z) {
return m * translate(x, y, z);
}
template < typename T >
mat<T, 4> translate(const mat<T, 4>& m, const vec<T, 3>& xyz) {
return m * translate(xyz);
}
// rotate
template < typename T >
mat<T, 4> rotate(T angle, T axis_x, T axis_y, T axis_z) {
const T x = axis_x;
const T y = axis_y;
const T z = axis_z;
const T px = x * x;
const T py = y * y;
const T pz = z * z;
const T cs = cos(angle);
const T sn = sin(angle);
const T ics = T(1) - cs;
const T xym = x * y * ics;
const T xzm = x * z * ics;
const T yzm = y * z * ics;
const T xsn = x * sn;
const T ysn = y * sn;
const T zsn = z * sn;
return {
px * ics + cs, xym + zsn, xzm - ysn, 0,
xym - zsn, py * ics + cs, yzm + xsn, 0,
xzm + ysn, yzm - xsn, pz * ics + cs, 0,
0, 0, 0, 1};
}
template < typename T >
mat<T, 4> rotate(T angle, const vec<T, 3>& axis) {
return rotate(angle, axis.x, axis.y, axis.z);
}
template < typename T >
mat<T, 4> rotate(const mat<T, 4>& m, T angle, T axis_x, T axis_y, T axis_z) {
return m * rotate(angle, axis_x, axis_y, axis_z);
}
template < typename T >
mat<T, 4> rotate(const mat<T, 4>& m, T angle, const vec<T, 3>& axis) {
return m * rotate(angle, axis);
}
// scale
template < typename T >
mat<T, 4> scale(T x, T y, T z) {
return {
{x, 0, 0, 0},
{0, y, 0, 0},
{0, 0, z, 0},
{0, 0, 0, 1}};
}
template < typename T >
mat<T, 4> scale(const vec<T, 3>& xyz) {
return scale(xyz.x, xyz.y, xyz.z);
}
template < typename T >
mat<T, 4> scale(const mat<T, 4>& m, T x, T y, T z) {
return m * scale(x, y, z);
}
template < typename T >
mat<T, 4> scale(const mat<T, 4>& m, const vec<T, 3>& xyz) {
return m * scale(xyz);
}
}

View File

@@ -0,0 +1,103 @@
/*******************************************************************************
* This file is part of the "https://github.com/blackmatov/vmath.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2020, by Matvey Cherevko (blackmatov@gmail.com)
******************************************************************************/
#include <vmath.hpp/vmath_mat_ext.hpp>
#define CATCH_CONFIG_FAST_COMPILE
#include <catch2/catch.hpp>
namespace
{
using namespace vmath_hpp;
template < typename T >
class approx2 {
public:
constexpr explicit approx2(T v) : value_(v) {}
constexpr explicit approx2(T x, T y) : value_(x, y) {}
friend constexpr bool operator==(const vec<T, 2>& l, const approx2& r) {
return (r.value_.x < l.x + epsilon)
&& (l.x < r.value_.x + epsilon)
&& (r.value_.y < l.y + epsilon)
&& (l.y < r.value_.y + epsilon);
}
private:
vec<T, 2> value_;
static constexpr T epsilon = std::numeric_limits<T>::epsilon() * 100;
};
template < typename T >
class approx3 {
public:
constexpr explicit approx3(T v) : value_(v) {}
constexpr explicit approx3(T x, T y, T z) : value_(x, y, z) {}
friend constexpr bool operator==(const vec<T, 3>& l, const approx3& r) {
return (r.value_.x < l.x + epsilon)
&& (l.x < r.value_.x + epsilon)
&& (r.value_.y < l.y + epsilon)
&& (l.y < r.value_.y + epsilon)
&& (r.value_.z < l.z + epsilon)
&& (l.z < r.value_.z + epsilon);
}
private:
vec<T, 3> value_;
static constexpr T epsilon = std::numeric_limits<T>::epsilon() * 100;
};
template < typename T >
class approx4 {
public:
constexpr explicit approx4(T v) : value_(v) {}
constexpr explicit approx4(T x, T y, T z, T w) : value_(x, y, z, w) {}
friend constexpr bool operator==(const vec<T, 4>& l, const approx4& r) {
return (r.value_.x < l.x + epsilon)
&& (l.x < r.value_.x + epsilon)
&& (r.value_.y < l.y + epsilon)
&& (l.y < r.value_.y + epsilon)
&& (r.value_.z < l.z + epsilon)
&& (l.z < r.value_.z + epsilon)
&& (r.value_.w < l.w + epsilon)
&& (l.w < r.value_.w + epsilon);
}
private:
vec<T, 4> value_;
static constexpr T epsilon = std::numeric_limits<T>::epsilon() * 100;
};
}
TEST_CASE("vmath/mat_ext") {
SECTION("identity") {
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * identity<float>() == approx4(2.f,3.f,4.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * identity<float>() == approx4(2.f,3.f,4.f,1.f));
}
SECTION("translate") {
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * translate(1.f,2.f,3.f) == approx4(3.f,5.f,7.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * translate(vec3f{1.f,2.f,3.f}) == approx4(3.f,5.f,7.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * translate(translate(1.f,2.f,3.f), 1.f,2.f,3.f) == approx4(4.f,7.f,10.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * translate(translate(1.f,2.f,3.f), vec3f{1.f,2.f,3.f}) == approx4(4.f,7.f,10.f,1.f));
}
SECTION("rotate") {
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * rotate(float(M_PI),0.f,0.f,1.f) == approx4(-2.f,-3.f,4.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * rotate(float(M_PI),vec3f{0.f,0.f,1.f}) == approx4(-2.f,-3.f,4.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * rotate(rotate(float(M_PI_2),0.f,0.f,1.f),float(M_PI_2),0.f,0.f,1.f) == approx4(-2.f,-3.f,4.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * rotate(rotate(float(M_PI_2),0.f,0.f,1.f),float(M_PI_2),vec3f{0.f,0.f,1.f}) == approx4(-2.f,-3.f,4.f,1.f));
}
SECTION("scale") {
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * scale(2.f,3.f,4.f) == approx4(4.f,9.f,16.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * scale(vec3f{2.f,3.f,4.f}) == approx4(4.f,9.f,16.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * scale(scale(2.f,2.f,2.f), 2.f,3.f,4.f) == approx4(8.f,18.f,32.f,1.f));
REQUIRE(vec4f(2.f,3.f,4.f,1.f) * scale(scale(2.f,2.f,2.f), vec3f{2.f,3.f,4.f}) == approx4(8.f,18.f,32.f,1.f));
}
}