Files
promise.hpp/promise.hpp
2018-12-10 22:37:24 +07:00

1183 lines
37 KiB
C++

/*******************************************************************************
* This file is part of the "promise.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2018 Matvey Cherevko
******************************************************************************/
#pragma once
#include <cstdint>
#include <cassert>
#include <new>
#include <mutex>
#include <atomic>
#include <memory>
#include <vector>
#include <utility>
#include <iterator>
#include <exception>
#include <stdexcept>
#include <functional>
#include <type_traits>
//
// invoke.hpp
// https://github.com/BlackMATov/invoke.hpp
//
namespace promise_hpp
{
#define INVOKE_HPP_NOEXCEPT_RETURN(...) \
noexcept(noexcept(__VA_ARGS__)) { return __VA_ARGS__; }
#define INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(...) \
noexcept(noexcept(__VA_ARGS__)) -> decltype (__VA_ARGS__) { return __VA_ARGS__; }
//
// void_t
//
namespace invoke_hpp
{
namespace impl
{
template < typename... Args >
struct make_void {
using type = void;
};
}
template < typename... Args >
using void_t = typename impl::make_void<Args...>::type;
}
//
// is_reference_wrapper
//
namespace invoke_hpp
{
namespace impl
{
template < typename T >
struct is_reference_wrapper_impl
: std::false_type {};
template < typename U >
struct is_reference_wrapper_impl<std::reference_wrapper<U>>
: std::true_type {};
}
template < typename T >
struct is_reference_wrapper
: impl::is_reference_wrapper_impl<std::remove_cv_t<T>> {};
}
//
// invoke
//
namespace invoke_hpp
{
namespace impl
{
//
// invoke_member_object_impl
//
template
<
typename Base, typename F, typename Derived,
typename std::enable_if_t<std::is_base_of<Base, std::decay_t<Derived>>::value, int> = 0
>
constexpr auto invoke_member_object_impl(F Base::* f, Derived&& ref)
INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(
std::forward<Derived>(ref).*f)
template
<
typename Base, typename F, typename RefWrap,
typename std::enable_if_t<is_reference_wrapper<std::decay_t<RefWrap>>::value, int> = 0
>
constexpr auto invoke_member_object_impl(F Base::* f, RefWrap&& ref)
INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(
ref.get().*f)
template
<
typename Base, typename F, typename Pointer,
typename std::enable_if_t<
!std::is_base_of<Base, std::decay_t<Pointer>>::value &&
!is_reference_wrapper<std::decay_t<Pointer>>::value
, int> = 0
>
constexpr auto invoke_member_object_impl(F Base::* f, Pointer&& ptr)
INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(
(*std::forward<Pointer>(ptr)).*f)
//
// invoke_member_function_impl
//
template
<
typename Base, typename F, typename Derived, typename... Args,
typename std::enable_if_t<std::is_base_of<Base, std::decay_t<Derived>>::value, int> = 0
>
constexpr auto invoke_member_function_impl(F Base::* f, Derived&& ref, Args&&... args)
INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(
(std::forward<Derived>(ref).*f)(std::forward<Args>(args)...))
template
<
typename Base, typename F, typename RefWrap, typename... Args,
typename std::enable_if_t<is_reference_wrapper<std::decay_t<RefWrap>>::value, int> = 0
>
constexpr auto invoke_member_function_impl(F Base::* f, RefWrap&& ref, Args&&... args)
INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(
(ref.get().*f)(std::forward<Args>(args)...))
template
<
typename Base, typename F, typename Pointer, typename... Args,
typename std::enable_if_t<
!std::is_base_of<Base, std::decay_t<Pointer>>::value &&
!is_reference_wrapper<std::decay_t<Pointer>>::value
, int> = 0
>
constexpr auto invoke_member_function_impl(F Base::* f, Pointer&& ptr, Args&&... args)
INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(
((*std::forward<Pointer>(ptr)).*f)(std::forward<Args>(args)...))
}
template
<
typename F, typename... Args,
typename std::enable_if_t<!std::is_member_pointer<std::decay_t<F>>::value, int> = 0
>
constexpr auto invoke(F&& f, Args&&... args)
INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(
std::forward<F>(f)(std::forward<Args>(args)...))
template
<
typename F, typename T,
typename std::enable_if_t<std::is_member_object_pointer<std::decay_t<F>>::value, int> = 0
>
constexpr auto invoke(F&& f, T&& t)
INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(
impl::invoke_member_object_impl(std::forward<F>(f), std::forward<T>(t)))
template
<
typename F, typename... Args,
typename std::enable_if_t<std::is_member_function_pointer<std::decay_t<F>>::value, int> = 0
>
constexpr auto invoke(F&& f, Args&&... args)
INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN(
impl::invoke_member_function_impl(std::forward<F>(f), std::forward<Args>(args)...))
}
//
// invoke_result
//
namespace invoke_hpp
{
namespace impl
{
struct invoke_result_impl_tag {};
template < typename Void, typename F, typename... Args >
struct invoke_result_impl {};
template < typename F, typename... Args >
struct invoke_result_impl<void_t<invoke_result_impl_tag, decltype(invoke_hpp::invoke(std::declval<F>(), std::declval<Args>()...))>, F, Args...> {
using type = decltype(invoke_hpp::invoke(std::declval<F>(), std::declval<Args>()...));
};
}
template < typename F, typename... Args >
struct invoke_result
: impl::invoke_result_impl<void, F, Args...> {};
template < typename F, typename... Args >
using invoke_result_t = typename invoke_result<F, Args...>::type;
}
//
// is_invocable
//
namespace invoke_hpp
{
namespace impl
{
struct is_invocable_r_impl_tag {};
template < typename Void, typename R, typename F, typename... Args >
struct is_invocable_r_impl
: std::false_type {};
template < typename R, typename F, typename... Args >
struct is_invocable_r_impl<void_t<is_invocable_r_impl_tag, invoke_result_t<F, Args...>>, R, F, Args...>
: std::conditional_t<
std::is_void<R>::value,
std::true_type,
std::is_convertible<invoke_result_t<F, Args...>, R>> {};
}
template < typename R, typename F, typename... Args >
struct is_invocable_r
: impl::is_invocable_r_impl<void, R, F, Args...> {};
template < typename F, typename... Args >
using is_invocable = is_invocable_r<void, F, Args...>;
}
//
// apply
//
namespace invoke_hpp
{
namespace impl
{
template < typename F, typename Tuple, std::size_t... I >
constexpr decltype(auto) apply_impl(F&& f, Tuple&& args, std::index_sequence<I...>)
INVOKE_HPP_NOEXCEPT_RETURN(
invoke_hpp::invoke(
std::forward<F>(f),
std::get<I>(std::forward<Tuple>(args))...))
}
template < typename F, typename Tuple >
constexpr decltype(auto) apply(F&& f, Tuple&& args)
INVOKE_HPP_NOEXCEPT_RETURN(
impl::apply_impl(
std::forward<F>(f),
std::forward<Tuple>(args),
std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>()))
}
#undef INVOKE_HPP_NOEXCEPT_RETURN
#undef INVOKE_HPP_NOEXCEPT_DECLTYPE_RETURN
}
//
// promise.hpp
// https://github.com/BlackMATov/promise.hpp
//
namespace promise_hpp
{
//
// forward declaration
//
template < typename T = void >
class promise;
//
// is_promise
//
namespace impl
{
template < typename T >
struct is_promise_impl
: std::false_type {};
template < typename R >
struct is_promise_impl<promise<R>>
: std::true_type {};
}
template < typename T >
struct is_promise
: impl::is_promise_impl<std::remove_cv_t<T>> {};
//
// is_promise_r
//
namespace impl
{
template < typename R, typename T >
struct is_promise_r_impl
: std::false_type {};
template < typename R, typename PR >
struct is_promise_r_impl<R, promise<PR>>
: std::is_convertible<PR, R> {};
}
template < typename R, typename T >
struct is_promise_r
: impl::is_promise_r_impl<R, std::remove_cv_t<T>> {};
//
// detail
//
namespace detail
{
class noncopyable {
public:
noncopyable(const noncopyable&) = delete;
noncopyable& operator=(const noncopyable&) = delete;
protected:
noncopyable() = default;
~noncopyable() = default;
};
template < typename T >
class storage final : private noncopyable {
public:
storage() = default;
~storage() noexcept(std::is_nothrow_destructible<T>::value) {
if ( initialized_ ) {
ptr_()->~T();
}
}
template < typename U >
void set(U&& value) noexcept(std::is_nothrow_constructible<T,U&&>::value) {
assert(!initialized_);
::new(ptr_()) T(std::forward<U>(value));
initialized_ = true;
}
const T& value() const noexcept {
assert(initialized_);
return *ptr_();
}
private:
T* ptr_() noexcept {
return reinterpret_cast<T*>(&data_);
}
const T* ptr_() const noexcept {
return reinterpret_cast<const T*>(&data_);
}
private:
std::aligned_storage_t<sizeof(T), alignof(T)> data_;
bool initialized_ = false;
};
}
//
// promise<T>
//
template < typename T >
class promise final {
public:
using value_type = T;
enum class status : std::uint8_t {
pending,
resolved,
rejected
};
public:
promise()
: state_(std::make_shared<state>()) {}
promise(const promise&) noexcept = default;
promise& operator=(const promise&) noexcept = default;
void swap(promise& other) noexcept {
state_.swap(other.state_);
}
std::size_t hash() const noexcept {
return std::hash<state*>()(state_.get());
}
friend bool operator<(const promise& l, const promise& r) noexcept {
return l.state_ < r.state_;
}
friend bool operator==(const promise& l, const promise& r) noexcept {
return l.state_ == r.state_;
}
friend bool operator!=(const promise& l, const promise& r) noexcept {
return l.state_ != r.state_;
}
template < typename ResolveF
, typename ResolveFR = invoke_hpp::invoke_result_t<ResolveF,T> >
std::enable_if_t<
is_promise<ResolveFR>::value && std::is_void<typename ResolveFR::value_type>::value,
promise<typename ResolveFR::value_type>>
then(ResolveF&& on_resolve) {
promise<typename ResolveFR::value_type> next;
then([
n = next,
f = std::forward<ResolveF>(on_resolve)
](const T& v) mutable {
auto np = invoke_hpp::invoke(
std::forward<decltype(f)>(f),
v);
np.then([n]() mutable {
n.resolve();
}, [n](std::exception_ptr e) mutable {
n.reject(e);
});
}, [n = next](std::exception_ptr e) mutable {
n.reject(e);
});
return next;
}
template < typename ResolveF
, typename ResolveFR = invoke_hpp::invoke_result_t<ResolveF,T> >
std::enable_if_t<
is_promise<ResolveFR>::value && !std::is_void<typename ResolveFR::value_type>::value,
promise<typename ResolveFR::value_type>>
then(ResolveF&& on_resolve) {
promise<typename ResolveFR::value_type> next;
then([
n = next,
f = std::forward<ResolveF>(on_resolve)
](const T& v) mutable {
auto np = invoke_hpp::invoke(
std::forward<decltype(f)>(f),
v);
np.then([n](const typename ResolveFR::value_type& nv) mutable {
n.resolve(nv);
}, [n](std::exception_ptr e) mutable {
n.reject(e);
});
}, [n = next](std::exception_ptr e) mutable {
n.reject(e);
});
return next;
}
template < typename ResolveF >
auto then_all(ResolveF&& on_resolve) {
return then([
f = std::forward<ResolveF>(on_resolve)
](const T& v) mutable {
auto r = invoke_hpp::invoke(
std::forward<decltype(f)>(f),
v);
return make_all_promise(std::move(r));
});
}
template < typename ResolveF >
auto then_any(ResolveF&& on_resolve) {
return then([
f = std::forward<ResolveF>(on_resolve)
](const T& v) mutable {
auto r = invoke_hpp::invoke(
std::forward<decltype(f)>(f),
v);
return make_any_promise(std::move(r));
});
}
template < typename ResolveF
, typename RejectF
, typename ResolveFR = invoke_hpp::invoke_result_t<ResolveF,T> >
std::enable_if_t<
!is_promise<ResolveFR>::value,
promise<ResolveFR>>
then(ResolveF&& on_resolve, RejectF&& on_reject) {
promise<ResolveFR> next;
state_->attach(
next,
std::forward<ResolveF>(on_resolve),
std::forward<RejectF>(on_reject));
return next;
}
template < typename ResolveF
, typename ResolveFR = invoke_hpp::invoke_result_t<ResolveF,T> >
std::enable_if_t<
!is_promise<ResolveFR>::value,
promise<ResolveFR>>
then(ResolveF&& on_resolve) {
return then(
std::forward<ResolveF>(on_resolve),
[](std::exception_ptr){});
}
template < typename RejectF >
promise<T> except(RejectF&& on_reject) {
return then(
[](const T& value) { return value; },
std::forward<RejectF>(on_reject));
}
template < typename U >
bool resolve(U&& value) {
return state_->resolve(
std::forward<U>(value));
}
bool reject(std::exception_ptr e) noexcept {
return state_->reject(e);
}
template < typename E >
bool reject(E&& e) {
return state_->reject(
std::make_exception_ptr(std::forward<E>(e)));
}
private:
class state;
std::shared_ptr<state> state_;
private:
class state final : private detail::noncopyable {
public:
state() = default;
template < typename U >
bool resolve(U&& value) {
std::lock_guard<std::mutex> guard(mutex_);
if ( status_ != status::pending ) {
return false;
}
storage_.set(std::forward<U>(value));
status_ = status::resolved;
invoke_resolve_handlers_();
return true;
}
bool reject(std::exception_ptr e) noexcept {
std::lock_guard<std::mutex> guard(mutex_);
if ( status_ != status::pending ) {
return false;
}
exception_ = e;
status_ = status::rejected;
invoke_reject_handlers_();
return true;
}
template < typename U, typename ResolveF, typename RejectF >
std::enable_if_t<std::is_void<U>::value, void>
attach(promise<U>& next, ResolveF&& resolve, RejectF&& reject) {
auto reject_h = [
n = next,
f = std::forward<RejectF>(reject)
](std::exception_ptr e) mutable {
try {
invoke_hpp::invoke(
std::forward<decltype(f)>(f),
e);
n.reject(e);
} catch (...) {
n.reject(std::current_exception());
}
};
auto resolve_h = [
n = next,
f = std::forward<ResolveF>(resolve),
j = reject_h
](const T& v) mutable {
try {
invoke_hpp::invoke(
std::forward<decltype(f)>(f),
v);
n.resolve();
} catch (...) {
invoke_hpp::invoke(
std::move(j),
std::current_exception());
}
};
std::lock_guard<std::mutex> guard(mutex_);
add_handlers_(std::move(resolve_h), std::move(reject_h));
}
template < typename U, typename ResolveF, typename RejectF >
std::enable_if_t<!std::is_void<U>::value, void>
attach(promise<U>& next, ResolveF&& resolve, RejectF&& reject) {
auto reject_h = [
n = next,
f = std::forward<RejectF>(reject)
](std::exception_ptr e) mutable {
try {
invoke_hpp::invoke(
std::forward<decltype(f)>(f),
e);
n.reject(e);
} catch (...) {
n.reject(std::current_exception());
}
};
auto resolve_h = [
n = next,
f = std::forward<ResolveF>(resolve),
j = reject_h
](const T& v) mutable {
try {
auto r = invoke_hpp::invoke(
std::forward<decltype(f)>(f),
v);
n.resolve(std::move(r));
} catch (...) {
invoke_hpp::invoke(
std::move(j),
std::current_exception());
}
};
std::lock_guard<std::mutex> guard(mutex_);
add_handlers_(std::move(resolve_h), std::move(reject_h));
}
private:
template < typename ResolveF, typename RejectF >
void add_handlers_(ResolveF&& resolve, RejectF&& reject) {
if ( status_ == status::resolved ) {
invoke_hpp::invoke(
std::forward<ResolveF>(resolve),
storage_.value());
} else if ( status_ == status::rejected ) {
invoke_hpp::invoke(
std::forward<RejectF>(reject),
exception_);
} else {
handlers_.emplace_back(
std::forward<ResolveF>(resolve),
std::forward<RejectF>(reject));
}
}
void invoke_resolve_handlers_() noexcept {
const T& value = storage_.value();
for ( const auto& h : handlers_ ) {
h.resolve_(value);
}
handlers_.clear();
}
void invoke_reject_handlers_() noexcept {
for ( const auto& h : handlers_ ) {
h.reject_(exception_);
}
handlers_.clear();
}
private:
detail::storage<T> storage_;
status status_ = status::pending;
std::exception_ptr exception_ = nullptr;
std::mutex mutex_;
struct handler {
using resolve_t = std::function<void(const T&)>;
using reject_t = std::function<void(std::exception_ptr)>;
resolve_t resolve_;
reject_t reject_;
template < typename ResolveF, typename RejectF >
handler(ResolveF&& resolve, RejectF&& reject)
: resolve_(std::forward<ResolveF>(resolve))
, reject_(std::forward<RejectF>(reject)) {}
};
std::vector<handler> handlers_;
};
};
//
// promise<void>
//
template <>
class promise<void> final {
public:
using value_type = void;
enum class status : std::uint8_t {
pending,
resolved,
rejected
};
public:
promise()
: state_(std::make_shared<state>()) {}
promise(const promise&) noexcept = default;
promise& operator=(const promise&) noexcept = default;
void swap(promise& other) noexcept {
state_.swap(other.state_);
}
std::size_t hash() const noexcept {
return std::hash<state*>()(state_.get());
}
friend bool operator<(const promise& l, const promise& r) noexcept {
return l.state_ < r.state_;
}
friend bool operator==(const promise& l, const promise& r) noexcept {
return l.state_ == r.state_;
}
friend bool operator!=(const promise& l, const promise& r) noexcept {
return l.state_ != r.state_;
}
template < typename ResolveF
, typename ResolveFR = invoke_hpp::invoke_result_t<ResolveF> >
std::enable_if_t<
is_promise<ResolveFR>::value && std::is_void<typename ResolveFR::value_type>::value,
promise<typename ResolveFR::value_type>>
then(ResolveF&& on_resolve) {
promise<typename ResolveFR::value_type> next;
then([
n = next,
f = std::forward<ResolveF>(on_resolve)
]() mutable {
auto np = invoke_hpp::invoke(
std::forward<decltype(f)>(f));
np.then([n]() mutable {
n.resolve();
}, [n](std::exception_ptr e) mutable {
n.reject(e);
});
}, [n = next](std::exception_ptr e) mutable {
n.reject(e);
});
return next;
}
template < typename ResolveF
, typename ResolveFR = invoke_hpp::invoke_result_t<ResolveF> >
std::enable_if_t<
is_promise<ResolveFR>::value && !std::is_void<typename ResolveFR::value_type>::value,
promise<typename ResolveFR::value_type>>
then(ResolveF&& on_resolve) {
promise<typename ResolveFR::value_type> next;
then([
n = next,
f = std::forward<ResolveF>(on_resolve)
]() mutable {
auto np = invoke_hpp::invoke(
std::forward<decltype(f)>(f));
np.then([n](const typename ResolveFR::value_type& nv) mutable {
n.resolve(nv);
}, [n](std::exception_ptr e) mutable {
n.reject(e);
});
}, [n = next](std::exception_ptr e) mutable {
n.reject(e);
});
return next;
}
template < typename ResolveF >
auto then_all(ResolveF&& on_resolve) {
return then([
f = std::forward<ResolveF>(on_resolve)
]() mutable {
auto r = invoke_hpp::invoke(
std::forward<decltype(f)>(f));
return make_all_promise(std::move(r));
});
}
template < typename ResolveF >
auto then_any(ResolveF&& on_resolve) {
return then([
f = std::forward<ResolveF>(on_resolve)
]() mutable {
auto r = invoke_hpp::invoke(
std::forward<decltype(f)>(f));
return make_any_promise(std::move(r));
});
}
template < typename ResolveF
, typename RejectF
, typename ResolveFR = invoke_hpp::invoke_result_t<ResolveF> >
std::enable_if_t<
!is_promise<ResolveFR>::value,
promise<ResolveFR>>
then(ResolveF&& on_resolve, RejectF&& on_reject) {
promise<ResolveFR> next;
state_->attach(
next,
std::forward<ResolveF>(on_resolve),
std::forward<RejectF>(on_reject));
return next;
}
template < typename ResolveF
, typename ResolveFR = invoke_hpp::invoke_result_t<ResolveF> >
std::enable_if_t<
!is_promise<ResolveFR>::value,
promise<ResolveFR>>
then(ResolveF&& on_resolve) {
return then(
std::forward<ResolveF>(on_resolve),
[](std::exception_ptr){});
}
template < typename RejectF >
promise<void> except(RejectF&& on_reject) {
return then(
[]{},
std::forward<RejectF>(on_reject));
}
bool resolve() {
return state_->resolve();
}
bool reject(std::exception_ptr e) noexcept {
return state_->reject(e);
}
template < typename E >
bool reject(E&& e) {
return state_->reject(
std::make_exception_ptr(std::forward<E>(e)));
}
private:
class state;
std::shared_ptr<state> state_;
private:
class state final : private detail::noncopyable {
public:
state() = default;
bool resolve() {
std::lock_guard<std::mutex> guard(mutex_);
if ( status_ != status::pending ) {
return false;
}
status_ = status::resolved;
invoke_resolve_handlers_();
return true;
}
bool reject(std::exception_ptr e) noexcept {
std::lock_guard<std::mutex> guard(mutex_);
if ( status_ != status::pending ) {
return false;
}
exception_ = e;
status_ = status::rejected;
invoke_reject_handlers_();
return true;
}
template < typename U, typename ResolveF, typename RejectF >
std::enable_if_t<std::is_void<U>::value, void>
attach(promise<U>& next, ResolveF&& resolve, RejectF&& reject) {
auto reject_h = [
n = next,
f = std::forward<RejectF>(reject)
](std::exception_ptr e) mutable {
try {
invoke_hpp::invoke(
std::forward<decltype(f)>(f),
e);
n.reject(e);
} catch (...) {
n.reject(std::current_exception());
}
};
auto resolve_h = [
n = next,
f = std::forward<ResolveF>(resolve),
j = reject_h
]() mutable {
try {
invoke_hpp::invoke(
std::forward<decltype(f)>(f));
n.resolve();
} catch (...) {
invoke_hpp::invoke(
std::move(j),
std::current_exception());
}
};
std::lock_guard<std::mutex> guard(mutex_);
add_handlers_(std::move(resolve_h), std::move(reject_h));
}
template < typename U, typename ResolveF, typename RejectF >
std::enable_if_t<!std::is_void<U>::value, void>
attach(promise<U>& next, ResolveF&& resolve, RejectF&& reject) {
auto reject_h = [
n = next,
f = std::forward<RejectF>(reject)
](std::exception_ptr e) mutable {
try {
invoke_hpp::invoke(
std::forward<decltype(f)>(f),
e);
n.reject(e);
} catch (...) {
n.reject(std::current_exception());
}
};
auto resolve_h = [
n = next,
f = std::forward<ResolveF>(resolve),
j = reject_h
]() mutable {
try {
auto r = invoke_hpp::invoke(
std::forward<decltype(f)>(f));
n.resolve(std::move(r));
} catch (...) {
invoke_hpp::invoke(
std::move(j),
std::current_exception());
}
};
std::lock_guard<std::mutex> guard(mutex_);
add_handlers_(std::move(resolve_h), std::move(reject_h));
}
private:
template < typename ResolveF, typename RejectF >
void add_handlers_(ResolveF&& resolve, RejectF&& reject) {
if ( status_ == status::resolved ) {
invoke_hpp::invoke(
std::forward<ResolveF>(resolve));
} else if ( status_ == status::rejected ) {
invoke_hpp::invoke(
std::forward<RejectF>(reject),
exception_);
} else {
handlers_.emplace_back(
std::forward<ResolveF>(resolve),
std::forward<RejectF>(reject));
}
}
void invoke_resolve_handlers_() noexcept {
for ( const auto& h : handlers_ ) {
h.resolve_();
}
handlers_.clear();
}
void invoke_reject_handlers_() noexcept {
for ( const auto& h : handlers_ ) {
h.reject_(exception_);
}
handlers_.clear();
}
private:
status status_ = status::pending;
std::exception_ptr exception_ = nullptr;
std::mutex mutex_;
struct handler {
using resolve_t = std::function<void()>;
using reject_t = std::function<void(std::exception_ptr)>;
resolve_t resolve_;
reject_t reject_;
template < typename ResolveF, typename RejectF >
handler(ResolveF&& resolve, RejectF&& reject)
: resolve_(std::forward<ResolveF>(resolve))
, reject_(std::forward<RejectF>(reject)) {}
};
std::vector<handler> handlers_;
};
};
//
// swap
//
template < typename T >
void swap(promise<T>& l, promise<T>& r) noexcept {
l.swap(r);
}
//
// make_promise
//
template < typename R >
promise<R> make_promise() {
return promise<R>();
}
template < typename R, typename F >
promise<R> make_promise(F&& f) {
promise<R> result;
auto resolver = [result](auto&& v) mutable {
return result.resolve(std::forward<decltype(v)>(v));
};
auto rejector = [result](auto&& e) mutable {
return result.reject(std::forward<decltype(e)>(e));
};
try {
invoke_hpp::invoke(
std::forward<F>(f),
std::move(resolver),
std::move(rejector));
} catch (...) {
result.reject(std::current_exception());
}
return result;
}
//
// make_resolved_promise
//
inline promise<void> make_resolved_promise() {
promise<void> result;
result.resolve();
return result;
}
template < typename R >
promise<std::decay_t<R>> make_resolved_promise(R&& v) {
promise<std::decay_t<R>> result;
result.resolve(std::forward<R>(v));
return result;
}
//
// make_rejected_promise
//
template < typename E >
promise<void> make_rejected_promise(E&& e) {
promise<void> result;
result.reject(std::forward<E>(e));
return result;
}
template < typename R, typename E >
promise<R> make_rejected_promise(E&& e) {
promise<R> result;
result.reject(std::forward<E>(e));
return result;
}
//
// make_all_promise
//
template < typename Iter >
auto make_all_promise(Iter begin, Iter end) {
using child_promise_t = typename Iter::value_type;
using child_promise_value_t = typename child_promise_t::value_type;
using promise_out_container_t = std::vector<child_promise_value_t>;
struct context_t {
promise_out_container_t results;
std::atomic_size_t counter = ATOMIC_VAR_INIT(0);
context_t(std::size_t count)
: results(count) {}
bool apply_result(std::size_t index, const child_promise_value_t& value) {
results[index] = value;
return ++counter == results.size();
}
};
if ( begin == end ) {
return make_resolved_promise(promise_out_container_t());
}
return make_promise<promise_out_container_t>([begin, end](auto&& resolver, auto&& rejector){
std::size_t result_index = 0;
auto context = std::make_shared<context_t>(std::distance(begin, end));
for ( auto iter = begin; iter != end; ++iter, ++result_index ) {
(*iter).then([
context,
resolver,
result_index
](const child_promise_value_t& v) mutable {
if ( context->apply_result(result_index, v) ) {
resolver(std::move(context->results));
}
}, rejector);
}
});
}
template < typename Container >
auto make_all_promise(Container&& container) {
return make_all_promise(
std::begin(container),
std::end(container));
}
//
// make_any_promise
//
template < typename Iter >
auto make_any_promise(Iter begin, Iter end) {
using child_promise_t = typename Iter::value_type;
using child_promise_value_t = typename child_promise_t::value_type;
if ( begin == end ) {
throw std::logic_error("at least one input promise must be provided for make_any_promise");
}
return make_promise<child_promise_value_t>([begin, end](auto&& resolver, auto&& rejector){
for ( auto iter = begin; iter != end; ++iter ) {
(*iter).then(resolver, rejector);
}
});
}
template < typename Container >
auto make_any_promise(Container&& container) {
return make_any_promise(
std::begin(container),
std::end(container));
}
}
namespace std
{
template < typename T >
struct hash<promise_hpp::promise<T>>
: std::unary_function<promise_hpp::promise<T>, std::size_t>
{
std::size_t operator()(const promise_hpp::promise<T>& p) const noexcept {
return p.hash();
}
};
}