Files
promise.hpp/tests.cpp

1249 lines
41 KiB
C++

/*******************************************************************************
* This file is part of the "promise.hpp"
* For conditions of distribution and use, see copyright notice in LICENSE.md
* Copyright (C) 2018 Matvey Cherevko
******************************************************************************/
#define CATCH_CONFIG_FAST_COMPILE
#include "catch.hpp"
#include <numeric>
#include <cstring>
#include "jobber.hpp"
#include "promise.hpp"
namespace jb = jobber_hpp;
namespace pr = promise_hpp;
namespace
{
struct obj_t {
};
bool check_hello_fail_exception(std::exception_ptr e) {
try {
std::rethrow_exception(e);
} catch (std::logic_error& ee) {
return 0 == std::strcmp(ee.what(), "hello fail");
} catch (...) {
return false;
}
}
bool check_hello_fail2_exception(std::exception_ptr e) {
try {
std::rethrow_exception(e);
} catch (std::logic_error& ee) {
return 0 == std::strcmp(ee.what(), "hello fail2");
} catch (...) {
return false;
}
}
class auto_thread final {
public:
template < typename F, typename... Args >
auto_thread(F&& f, Args&&... args)
: thread_(std::forward<F>(f), std::forward<Args>(args)...) {}
~auto_thread() noexcept {
if ( thread_.joinable() ) {
thread_.join();
}
}
void join() {
thread_.join();
}
private:
std::thread thread_;
};
}
TEST_CASE("is_promise") {
SECTION("positive") {
static_assert(
pr::is_promise<pr::promise<void>>::value,
"unit test fail");
static_assert(
pr::is_promise<const pr::promise<void>>::value,
"unit test fail");
static_assert(
pr::is_promise<const volatile pr::promise<void>>::value,
"unit test fail");
static_assert(
pr::is_promise<pr::promise<int>>::value,
"unit test fail");
static_assert(
pr::is_promise<const pr::promise<int>>::value,
"unit test fail");
static_assert(
pr::is_promise<const volatile pr::promise<int>>::value,
"unit test fail");
}
SECTION("negative") {
static_assert(
!pr::is_promise<pr::promise<void>&>::value,
"unit test fail");
static_assert(
!pr::is_promise<const pr::promise<void>*>::value,
"unit test fail");
static_assert(
!pr::is_promise<const volatile pr::promise<int>&>::value,
"unit test fail");
static_assert(
!pr::is_promise<int>::value,
"unit test fail");
static_assert(
!pr::is_promise<void>::value,
"unit test fail");
static_assert(
!pr::is_promise<const volatile int>::value,
"unit test fail");
}
}
TEST_CASE("is_promise_r") {
SECTION("positive") {
static_assert(
pr::is_promise_r<void, pr::promise<void>>::value,
"unit test fail");
static_assert(
pr::is_promise_r<int, const pr::promise<int>>::value,
"unit test fail");
static_assert(
pr::is_promise_r<double, const pr::promise<int>>::value,
"unit test fail");
}
SECTION("negative") {
static_assert(
!pr::is_promise_r<void, pr::promise<int>>::value,
"unit test fail");
static_assert(
!pr::is_promise_r<void, const pr::promise<int>>::value,
"unit test fail");
static_assert(
!pr::is_promise_r<int, pr::promise<obj_t>>::value,
"unit test fail");
static_assert(
!pr::is_promise_r<double, int>::value,
"unit test fail");
}
}
TEST_CASE("promise") {
SECTION("basic") {
{
auto p1 = pr::promise<int>();
auto p2 = pr::promise<int>();
REQUIRE_FALSE(p1 == p2);
REQUIRE(p1 != p2);
REQUIRE((p1 < p2 || p2 < p1));
REQUIRE(p1.hash() != p2.hash());
REQUIRE(p1.hash() == std::hash<pr::promise<int>>()(p1));
}
{
auto p1 = pr::promise<void>();
auto p2 = pr::promise<void>();
REQUIRE_FALSE(p1 == p2);
REQUIRE(p1 != p2);
REQUIRE((p1 < p2 || p2 < p1));
REQUIRE(p1.hash() != p2.hash());
REQUIRE(p1.hash() == std::hash<pr::promise<void>>()(p1));
}
{
auto p1 = pr::promise<int>();
auto p2 = pr::promise<int>();
auto p3 = p1;
REQUIRE(p1 == p3);
p3 = p2;
REQUIRE(p2 == p3);
}
{
auto p1 = pr::promise<int>();
auto p2 = pr::promise<int>();
auto p3 = p1;
p1.swap(p2);
REQUIRE(p2 == p3);
REQUIRE_FALSE(p1 == p3);
}
{
auto p1 = pr::promise<void>();
auto p2 = pr::promise<void>();
auto p3 = p1;
p1.swap(p2);
REQUIRE(p2 == p3);
REQUIRE_FALSE(p1 == p3);
}
}
SECTION("resolved") {
{
int check_42_int = 0;
auto p = pr::promise<int>();
p.resolve(42);
p.then([&check_42_int](int value){
check_42_int = value;
});
REQUIRE(check_42_int == 42);
}
{
int check_42_int = 0;
auto p = pr::promise<int>();
p.resolve(42);
p.except([](std::exception_ptr){
}).then([&check_42_int](int value){
check_42_int = value;
});
REQUIRE(check_42_int == 42);
}
{
int check_84_int = 0;
bool check_void_call = false;
int check_100500_transform = 0;
auto p = pr::promise<int>();
p.resolve(42);
p.then([](int value){
return value * 2;
}).then([&check_84_int](int value){
check_84_int = value;
}).then([&check_void_call](){
check_void_call = true;
}).then([](){
return 100500;
}).then([&check_100500_transform](int value){
check_100500_transform = value;
});
REQUIRE(check_84_int == 84);
REQUIRE(check_void_call);
REQUIRE(check_100500_transform == 100500);
}
}
SECTION("rejected") {
{
bool call_fail_with_logic_error = false;
bool not_call_then_on_reject = true;
auto p = pr::promise<int>();
p.reject(std::logic_error("hello fail"));
p.then([&not_call_then_on_reject](int value) {
(void)value;
not_call_then_on_reject = false;
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(not_call_then_on_reject);
REQUIRE(call_fail_with_logic_error);
}
{
std::logic_error ee("hello fail");
bool call_fail_with_logic_error = false;
auto p = pr::promise<int>();
p.reject(ee);
p.then([](int){
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
std::logic_error ee("hello fail");
bool call_fail_with_logic_error = false;
auto p = pr::promise<int>();
p.reject(std::make_exception_ptr(ee));
p.then([](int){
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
int check_multi_fail = 0;
auto p = pr::promise<>();
p.reject(std::logic_error("hello fail"));
p.except([&check_multi_fail](std::exception_ptr){
++check_multi_fail;
}).except([&check_multi_fail](std::exception_ptr){
++check_multi_fail;
});
REQUIRE(check_multi_fail == 2);
}
}
SECTION("unresolved") {
{
int check_42_int = 0;
bool not_call_before_resolve = true;
auto p = pr::promise<int>();
p.then([&not_call_before_resolve](int value){
not_call_before_resolve = false;
return value * 2;
}).then([&check_42_int, &not_call_before_resolve](int value){
not_call_before_resolve = false;
check_42_int = value;
});
REQUIRE(check_42_int == 0);
REQUIRE(not_call_before_resolve);
p.resolve(42);
REQUIRE(check_42_int == 84);
REQUIRE_FALSE(not_call_before_resolve);
}
{
bool not_call_then_on_reject = true;
bool call_fail_with_logic_error = false;
auto p = pr::promise<int>();
p.then([&not_call_then_on_reject](int){
not_call_then_on_reject = false;
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(not_call_then_on_reject);
REQUIRE_FALSE(call_fail_with_logic_error);
p.reject(std::make_exception_ptr(std::logic_error("hello fail")));
REQUIRE(not_call_then_on_reject);
REQUIRE(call_fail_with_logic_error);
}
}
SECTION("make_promise") {
{
int check_84_int = 0;
auto p = pr::make_promise<int>([](auto resolve, auto reject){
(void)reject;
resolve(42);
});
p.then([](int value){
return value * 2;
}).then([&check_84_int](int value){
check_84_int = value;
});
REQUIRE(check_84_int == 84);
}
{
bool call_fail_with_logic_error = false;
auto p = pr::make_promise<int>([](auto resolve, auto reject){
(void)resolve;
reject(std::logic_error("hello fail"));
});
p.except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
bool call_fail_with_logic_error = false;
auto p = pr::make_promise<int>([](auto resolve, auto reject){
(void)resolve;
(void)reject;
throw std::logic_error("hello fail");
});
p.except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
}
SECTION("make_resolved_promise") {
{
bool call_check = false;
pr::make_resolved_promise()
.then([&call_check]{
call_check = true;
});
REQUIRE(call_check);
}
{
int check_42_int = 0;
pr::make_resolved_promise(42)
.then([&check_42_int](int value){
check_42_int = value;
});
REQUIRE(check_42_int == 42);
}
}
SECTION("make_rejected_promise") {
{
bool call_fail_with_logic_error = false;
pr::make_rejected_promise<int>(std::logic_error("hello fail"))
.except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
bool call_fail_with_logic_error = false;
pr::make_rejected_promise(std::logic_error("hello fail"))
.except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
}
SECTION("exceptions") {
{
bool not_call_then_on_reject = true;
bool call_fail_with_logic_error = false;
auto p = pr::promise<int>();
p.resolve(42);
p.then([](int){
throw std::logic_error("hello fail");
}).then([&not_call_then_on_reject](){
not_call_then_on_reject = false;
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(not_call_then_on_reject);
REQUIRE(call_fail_with_logic_error);
}
{
bool not_call_then_on_reject = true;
bool call_fail_with_logic_error = false;
auto p = pr::promise<int>();
p.resolve(42);
p.then([](int){
throw std::logic_error("hello fail");
}, [](std::exception_ptr){
throw std::logic_error("hello fail2");
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail2_exception(e);
});
REQUIRE(not_call_then_on_reject);
REQUIRE(call_fail_with_logic_error);
}
}
SECTION("multi_then") {
{
auto p = pr::promise<int>();
int pa_value = 0;
{
auto pa = p.then([](int value){
return value * 2;
}).then([&pa_value](int value){
pa_value = value;
});
}
int pb_value = 0;
{
auto pb = p.then([](int value){
return value / 2;
}).then([&pb_value](int value){
pb_value = value;
});
}
REQUIRE(pa_value == 0);
REQUIRE(pb_value == 0);
p.resolve(42);
REQUIRE(pa_value == 84);
REQUIRE(pb_value == 21);
}
{
auto p = pr::promise<int>();
int pa_value = 0;
{
auto pa = p.then([](int){
throw std::logic_error("hello fail");
}).except([&pa_value](std::exception_ptr e){
if ( check_hello_fail_exception(e) ) {
pa_value = 84;
}
});
}
int pb_value = 0;
{
auto pb = p.then([](int value){
return value / 2;
}).then([&pb_value](int value){
pb_value = value;
});
}
REQUIRE(pa_value == 0);
REQUIRE(pb_value == 0);
p.resolve(42);
REQUIRE(pa_value == 84);
REQUIRE(pb_value == 21);
}
}
SECTION("chaining") {
{
int check_84_int = 0;
auto p1 = pr::make_resolved_promise(42);
auto p2 = pr::make_resolved_promise(84);
p1.then([&p2](int v){
(void)v;
return p2;
}).then([&check_84_int](int v2){
check_84_int = v2;
});
REQUIRE(check_84_int == 84);
}
{
int check_84_int = 0;
auto p1 = pr::make_resolved_promise();
auto p2 = pr::make_resolved_promise(84);
p1.then([&p2](){
return p2;
}).then([&check_84_int](int v){
check_84_int = v;
});
REQUIRE(check_84_int == 84);
}
{
int check_84_int = 0;
auto p1 = pr::make_resolved_promise(42);
auto p2 = pr::make_resolved_promise();
p1.then([&p2](int v){
(void)v;
return p2;
}).then([&check_84_int](){
check_84_int = 84;
});
REQUIRE(check_84_int == 84);
}
{
int check_84_int = 0;
auto p1 = pr::make_resolved_promise();
auto p2 = pr::make_resolved_promise();
p1.then([&p2](){
return p2;
}).then([&check_84_int](){
check_84_int = 84;
});
REQUIRE(check_84_int == 84);
}
}
SECTION("lazy_chaining") {
{
int check_84_int = 0;
auto p1 = pr::make_promise<int>();
auto p2 = pr::make_promise<int>();
p1.then([&p2](int v){
(void)v;
return p2;
}).then([&check_84_int](int v2){
check_84_int = v2;
});
REQUIRE(check_84_int == 0);
p1.resolve(42);
REQUIRE(check_84_int == 0);
p2.resolve(84);
REQUIRE(check_84_int == 84);
}
}
SECTION("typed_chaining_fails") {
{
bool call_fail_with_logic_error = false;
auto p1 = pr::make_resolved_promise(42);
p1.then([](int v) -> pr::promise<int> {
(void)v;
throw std::logic_error("hello fail");
}).then([](int v2){
(void)v2;
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
bool call_fail_with_logic_error = false;
auto p1 = pr::make_resolved_promise(42);
auto p2 = pr::make_resolved_promise(84);
p1.then([&p2](int v){
(void)v;
return p2;
}).then([](int v2){
(void)v2;
throw std::logic_error("hello fail");
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
bool call_fail_with_logic_error = false;
auto p1 = pr::make_rejected_promise<int>(std::logic_error("hello fail"));
auto p2 = pr::make_resolved_promise(84);
p1.then([&p2](int v){
(void)v;
return p2;
}).then([](int v2){
(void)v2;
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
bool call_fail_with_logic_error = false;
auto p1 = pr::make_resolved_promise(42);
auto p2 = pr::make_rejected_promise<int>(std::logic_error("hello fail"));
p1.then([&p2](int v){
(void)v;
return p2;
}).then([](int v2){
(void)v2;
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
}
SECTION("void_chaining_fails") {
{
bool call_fail_with_logic_error = false;
auto p1 = pr::make_resolved_promise();
p1.then([]() -> pr::promise<void> {
throw std::logic_error("hello fail");
}).then([](){
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
bool call_fail_with_logic_error = false;
auto p1 = pr::make_resolved_promise();
auto p2 = pr::make_resolved_promise();
p1.then([&p2](){
return p2;
}).then([](){
throw std::logic_error("hello fail");
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
bool call_fail_with_logic_error = false;
auto p1 = pr::make_rejected_promise<void>(std::logic_error("hello fail"));
auto p2 = pr::make_resolved_promise();
p1.then([&p2](){
return p2;
}).then([](){
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
bool call_fail_with_logic_error = false;
auto p1 = pr::make_resolved_promise();
auto p2 = pr::make_rejected_promise<void>(std::logic_error("hello fail"));
p1.then([&p2](){
return p2;
}).then([](){
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
}
SECTION("make_all_promise") {
{
bool all_is_ok = false;
pr::make_all_promise(std::vector<pr::promise<int>>())
.then([&all_is_ok](const std::vector<int>& c){
all_is_ok = c.empty();
});
REQUIRE(all_is_ok);
}
{
bool all_is_ok = false;
auto p = pr::make_all_promise(std::vector<pr::promise<int>>{
pr::make_resolved_promise(32),
pr::make_resolved_promise(10)
}).then([&all_is_ok](const std::vector<int>& c){
all_is_ok = (2 == c.size())
&& c[0] == 32
&& c[1] == 10;
});
REQUIRE(all_is_ok);
}
{
auto p1 = pr::promise<int>();
auto p2 = pr::promise<int>();
int call_then_only_once = 0;
pr::make_all_promise(std::vector<pr::promise<int>>{p1, p2})
.then([&call_then_only_once](const std::vector<int>& c){
(void)c;
++call_then_only_once;
});
p1.resolve(1);
p2.resolve(2);
REQUIRE(call_then_only_once == 1);
}
}
SECTION("make_any_promise") {
{
auto p1 = pr::promise<int>();
auto p2 = pr::promise<int>();
int check_42_int = 0;
int call_then_only_once = 0;
pr::make_any_promise(std::vector<pr::promise<int>>{p1, p2})
.then([&check_42_int, &call_then_only_once](const int& v){
check_42_int = v;
++call_then_only_once;
});
p1.resolve(42);
REQUIRE(check_42_int == 42);
REQUIRE(call_then_only_once == 1);
p2.resolve(84);
REQUIRE(check_42_int == 42);
REQUIRE(call_then_only_once == 1);
}
{
auto p1 = pr::promise<int>();
auto p2 = pr::promise<int>();
int check_42_int = 0;
int call_then_only_once = 0;
pr::make_any_promise(std::vector<pr::promise<int>>{p1, p2})
.then([&check_42_int, &call_then_only_once](const int& v){
check_42_int = v;
++call_then_only_once;
});
p2.resolve(42);
REQUIRE(check_42_int == 42);
REQUIRE(call_then_only_once == 1);
p1.resolve(84);
REQUIRE(check_42_int == 42);
REQUIRE(call_then_only_once == 1);
}
}
SECTION("make_all_promise_fail") {
{
bool call_fail_with_logic_error = false;
bool not_call_then_on_reject = true;
auto p = pr::make_all_promise(std::vector<pr::promise<int>>{
pr::make_rejected_promise<int>(std::logic_error("hello fail")),
pr::make_resolved_promise(10)
}).then([&not_call_then_on_reject](const std::vector<int>& c){
(void)c;
not_call_then_on_reject = false;
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(not_call_then_on_reject);
REQUIRE(call_fail_with_logic_error);
}
}
SECTION("make_any_promise_fail") {
REQUIRE_THROWS_AS(
pr::make_any_promise(std::vector<pr::promise<int>>{}),
std::logic_error);
{
bool call_fail_with_logic_error = false;
bool not_call_then_on_reject = true;
auto p = pr::make_any_promise(std::vector<pr::promise<int>>{
pr::make_rejected_promise<int>(std::logic_error("hello fail")),
pr::make_resolved_promise(10)
}).then([&not_call_then_on_reject](const int& c){
(void)c;
not_call_then_on_reject = false;
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(not_call_then_on_reject);
REQUIRE(call_fail_with_logic_error);
}
}
SECTION("then_all") {
{
int check_42_int = 0;
pr::make_resolved_promise()
.then_all([](){
return std::vector<pr::promise<int>>{
pr::make_resolved_promise(32),
pr::make_resolved_promise(10)};
}).then([&check_42_int](const std::vector<int>& v){
if ( v.size() == 2) {
check_42_int = v[0] + v[1];
}
});
REQUIRE(check_42_int == 42);
}
{
int check_42_int = 0;
int check_42_int2 = 0;
pr::make_resolved_promise(42)
.then_all([&check_42_int](int v){
check_42_int = v;
return std::vector<pr::promise<int>>{
pr::make_resolved_promise(32),
pr::make_resolved_promise(10)};
}).then([&check_42_int2](const std::vector<int>& v){
if ( v.size() == 2) {
check_42_int2 = v[0] + v[1];
}
});
REQUIRE(check_42_int == 42);
REQUIRE(check_42_int2 == 42);
}
}
SECTION("then_any") {
{
int check_42_int = 0;
pr::make_resolved_promise()
.then_any([](){
return std::vector<pr::promise<int>>{
pr::make_resolved_promise(42),
pr::make_rejected_promise<int>(std::logic_error("hello fail"))};
}).then([&check_42_int](const int& v){
check_42_int = v;
});
REQUIRE(check_42_int == 42);
}
{
bool call_fail_with_logic_error = false;
pr::make_resolved_promise()
.then_any([](){
return std::vector<pr::promise<int>>{
pr::make_rejected_promise<int>(std::logic_error("hello fail")),
pr::make_resolved_promise(42)};
}).except([&call_fail_with_logic_error](std::exception_ptr e){
call_fail_with_logic_error = check_hello_fail_exception(e);
});
REQUIRE(call_fail_with_logic_error);
}
{
int check_42_int = 0;
int check_42_int2 = 0;
int call_then_only_once = 0;
pr::make_resolved_promise(42)
.then_any([&check_42_int](int v){
check_42_int = v;
return std::vector<pr::promise<int>>{
pr::make_resolved_promise(42),
pr::make_resolved_promise(10)};
}).then([&call_then_only_once, &check_42_int2](const int& v){
++call_then_only_once;
check_42_int2 = v;
});
REQUIRE(check_42_int == 42);
REQUIRE(check_42_int2 == 42);
REQUIRE(call_then_only_once == 1);
}
}
}
TEST_CASE("get_and_wait") {
SECTION("get_void_promises") {
{
auto p = pr::make_resolved_promise();
REQUIRE_NOTHROW(p.get());
}
{
auto p = pr::make_rejected_promise<void>(std::logic_error("hello fail"));
REQUIRE_THROWS_AS(p.get(), std::logic_error);
}
{
auto p = pr::promise<void>();
auto_thread t{[p]() mutable {
std::this_thread::sleep_for(std::chrono::milliseconds(5));
p.resolve();
}};
t.join();
REQUIRE_NOTHROW(p.get());
}
{
auto p = pr::promise<void>();
auto_thread t{[p]() mutable {
std::this_thread::sleep_for(std::chrono::milliseconds(5));
p.resolve();
}};
REQUIRE_NOTHROW(p.get());
}
{
auto p = pr::promise<void>();
auto_thread t{[p]() mutable {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
p.resolve();
}};
REQUIRE(p.wait_for(
std::chrono::milliseconds(5))
== pr::promise_wait_status::timeout);
REQUIRE(p.wait_for(
std::chrono::milliseconds(200))
== pr::promise_wait_status::no_timeout);
}
{
auto p = pr::promise<void>();
auto_thread t{[p]() mutable {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
p.resolve();
}};
REQUIRE(p.wait_until(
std::chrono::high_resolution_clock::now() + std::chrono::milliseconds(5))
== pr::promise_wait_status::timeout);
REQUIRE(p.wait_until(
std::chrono::high_resolution_clock::now() + std::chrono::milliseconds(200))
== pr::promise_wait_status::no_timeout);
}
}
SECTION("get_typed_promises") {
{
auto p = pr::make_resolved_promise(42);
REQUIRE(p.get() == 42);
}
{
auto p = pr::make_rejected_promise<int>(std::logic_error("hello fail"));
REQUIRE_THROWS_AS(p.get(), std::logic_error);
}
{
auto p = pr::promise<int>();
auto_thread t{[p]() mutable {
std::this_thread::sleep_for(std::chrono::milliseconds(5));
p.resolve(42);
}};
t.join();
REQUIRE(p.get() == 42);
}
{
auto p = pr::promise<int>();
auto_thread t{[p]() mutable {
std::this_thread::sleep_for(std::chrono::milliseconds(5));
p.resolve(42);
}};
REQUIRE(p.get() == 42);
}
{
auto p = pr::promise<int>();
auto_thread t{[p]() mutable {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
p.resolve(42);
}};
REQUIRE(p.wait_for(
std::chrono::milliseconds(5))
== pr::promise_wait_status::timeout);
REQUIRE(p.wait_for(
std::chrono::milliseconds(200))
== pr::promise_wait_status::no_timeout);
REQUIRE(p.get() == 42);
}
{
auto p = pr::promise<int>();
auto_thread t{[p]() mutable {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
p.resolve(42);
}};
REQUIRE(p.wait_until(
std::chrono::high_resolution_clock::now() + std::chrono::milliseconds(5))
== pr::promise_wait_status::timeout);
REQUIRE(p.wait_until(
std::chrono::high_resolution_clock::now() + std::chrono::milliseconds(200))
== pr::promise_wait_status::no_timeout);
REQUIRE(p.get() == 42);
}
}
}
TEST_CASE("jobber") {
{
jb::jobber j(1);
auto pv0 = j.async([](){
throw std::exception();
});
REQUIRE_THROWS_AS(pv0.get(), std::exception);
}
{
auto pv0 = pr::promise<int>();
{
jb::jobber j{0};
pv0 = j.async([](){
return 42;
});
}
REQUIRE_THROWS_AS(pv0.get(), jb::jobber_cancelled_exception);
}
{
int v5 = 5;
jb::jobber j(1);
auto pv0 = j.async([](int v){
REQUIRE(v == 5);
throw std::exception();
}, v5);
REQUIRE_THROWS_AS(pv0.get(), std::exception);
auto pv1 = j.async([](int& v){
REQUIRE(v == 5);
return v != 5
? 0
: throw std::exception();
}, std::ref(v5));
REQUIRE_THROWS_AS(pv1.get(), std::exception);
auto pv3 = j.async([](int& v){
v = 4;
return v;
}, std::ref(v5));
REQUIRE(pv3.get() == v5);
REQUIRE(v5 == 4);
}
{
const float pi = 3.14159265358979323846264338327950288f;
jb::jobber j(1);
auto p0 = j.async([](float angle){
return std::sin(angle);
}, pi);
auto p1 = j.async([](float angle){
return std::cos(angle);
}, pi * 2);
REQUIRE(p0.get() == Approx(0.f).margin(0.01f));
REQUIRE(p1.get() == Approx(1.f).margin(0.01f));
}
{
jb::jobber j(1);
j.pause();
jb::jobber_priority max_priority = jb::jobber_priority::highest;
j.async([](){
std::this_thread::sleep_for(std::chrono::milliseconds(2));
});
for ( std::size_t i = 0; i < 10; ++i ) {
jb::jobber_priority p = static_cast<jb::jobber_priority>(
i % static_cast<std::size_t>(jb::jobber_priority::highest));
j.async(p, [&max_priority](jb::jobber_priority priority) {
REQUIRE(priority <= max_priority);
max_priority = priority;
}, p);
}
j.resume();
j.wait_all();
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 10; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
j.resume();
REQUIRE(counter < 10);
j.wait_all();
REQUIRE(counter == 10);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 10; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
REQUIRE(counter < 10);
j.active_wait_all();
REQUIRE(counter == 10);
}
{
jb::jobber j(1);
const auto time_now = [](){
return std::chrono::high_resolution_clock::now();
};
REQUIRE(jb::jobber_wait_status::no_timeout == j.wait_all_for(std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::no_timeout == j.wait_all_until(time_now() + std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::no_timeout == j.active_wait_all_for(std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::no_timeout == j.active_wait_all_until(time_now() + std::chrono::milliseconds(-1)));
j.pause();
j.async([]{});
REQUIRE(jb::jobber_wait_status::timeout == j.wait_all_for(std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::timeout == j.wait_all_until(time_now() + std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::timeout == j.active_wait_all_for(std::chrono::milliseconds(-1)));
REQUIRE(jb::jobber_wait_status::timeout == j.active_wait_all_until(time_now() + std::chrono::milliseconds(-1)));
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 10; ++i ) {
j.async([&counter](){
++counter;
});
}
const auto time_now = [](){
return std::chrono::high_resolution_clock::now();
};
j.wait_all_for(std::chrono::milliseconds(10));
j.wait_all_until(time_now() + std::chrono::milliseconds(10));
REQUIRE(counter == 0);
j.active_wait_all_for(std::chrono::milliseconds(10));
j.active_wait_all_until(time_now() + std::chrono::milliseconds(10));
REQUIRE(counter > 0);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 50; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
const auto time_now = [](){
return std::chrono::high_resolution_clock::now();
};
const auto b = time_now();
j.resume();
j.wait_all_for(std::chrono::milliseconds(100));
REQUIRE(time_now() - b > std::chrono::milliseconds(50));
REQUIRE(counter > 2);
REQUIRE(counter < 50);
j.wait_all_until(time_now() + std::chrono::seconds(3));
REQUIRE(counter == 50);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 50; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
const auto time_now = [](){
return std::chrono::high_resolution_clock::now();
};
const auto b = time_now();
j.wait_all_for(std::chrono::milliseconds(15));
REQUIRE(time_now() - b > std::chrono::milliseconds(10));
REQUIRE(counter == 0);
j.wait_all_until(time_now() + std::chrono::milliseconds(15));
REQUIRE(time_now() - b > std::chrono::milliseconds(20));
REQUIRE(counter == 0);
j.active_wait_all_for(std::chrono::milliseconds(100));
REQUIRE(time_now() - b > std::chrono::milliseconds(70));
REQUIRE(counter > 2);
REQUIRE(counter < 50);
j.active_wait_all_until(time_now() + std::chrono::seconds(3));
REQUIRE(counter == 50);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 30; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
j.resume();
REQUIRE(jb::jobber_wait_status::timeout == j.wait_all_for(std::chrono::milliseconds(50)));
REQUIRE(counter > 0);
REQUIRE(jb::jobber_wait_status::no_timeout == j.wait_all_for(std::chrono::seconds(5)));
REQUIRE(counter == 30);
}
{
jb::jobber j(1);
std::atomic<int> counter = ATOMIC_VAR_INIT(0);
j.pause();
for ( std::size_t i = 0; i < 30; ++i ) {
j.async([&counter](){
++counter;
std::this_thread::sleep_for(std::chrono::milliseconds(5));
});
}
REQUIRE(jb::jobber_wait_status::timeout == j.active_wait_all_for(std::chrono::milliseconds(50)));
REQUIRE(counter > 0);
REQUIRE(jb::jobber_wait_status::no_timeout == j.active_wait_all_for(std::chrono::seconds(5)));
REQUIRE(counter == 30);
}
{
jb::jobber j(2);
jb::jobber g(2);
std::vector<pr::promise<float>> jp(50);
for ( auto& jpi : jp ) {
jpi = j.async([&g](){
std::vector<pr::promise<float>> gp(50);
for ( std::size_t i = 0; i < gp.size(); ++i ) {
gp[i] = g.async([](float angle){
return std::sin(angle);
}, i);
}
return std::accumulate(gp.begin(), gp.end(), 0.f,
[](float r, pr::promise<float>& f){
return r + f.get();
});
});
}
float r0 = std::accumulate(jp.begin(), jp.end(), 0.f,
[](float r, pr::promise<float>& f){
return r + f.get();
});
float r1 = 0.f;
for ( std::size_t i = 0; i < 50; ++i ) {
r1 += std::sin(static_cast<float>(i));
}
REQUIRE(r0 == Approx(r1 * 50.f).margin(0.01f));
}
}