import pandas as pd import numpy as np df1 = pd.DataFrame({'row': [0, 1, 2], 'One_X': [1.1, 1.1, 1.1], 'Year': [2018, 2019, 2020], 'Winner': [True, False, True], 'Two_Y': [1.22, 1.22, 1.22]}) print(df1) ###line 8 df2 = pd.DataFrame({'row': [0, 1, 2], 'One_X': [1.1, 1.1, 1.1], 'One_Y': [1.2, 1.2, 1.2], 'Two_X': [1.11, 1.11, 1.11], 'Two_Y': [1.22, 1.22, 1.22], 'LABELS': ['A', 'B', 'C']}) print(df2) ##line 16 df3 = pd.DataFrame(data={'Province' : ['ON','QC','BC','AL','AL','MN','ON'], 'City' : ['Toronto','Montreal','Vancouver','Calgary','Edmonton','Winnipeg','Windsor'], 'Sales' : [13,6,16,8,4,3,1]}) table = pd.pivot_table(df3,values=['Sales'],index=['Province'],columns=['City'],aggfunc=np.sum,margins=True) table.stack('City') print(df3) df4 = pd.DataFrame({'row': np.random.random(10000), 'One_X': np.random.random(10000), 'One_Y': np.random.random(10000), 'Two_X': np.random.random(10000), 'Two_Y': np.random.random(10000), 'LABELS': ['A'] * 10000}) print(df4) ##line 31 df5 = pd.DataFrame({'foo_%': np.random.random(10)}) print(df5) #line 34