class property(object): """ Property attribute. fget function to be used for getting an attribute value fset function to be used for setting an attribute value fdel function to be used for del'ing an attribute doc docstring Typical use is to define a managed attribute x: class C(object): def getx(self): return self._x def setx(self, value): self._x = value def delx(self): del self._x x = property(getx, setx, delx, "I'm the 'x' property.") Decorators make defining new properties or modifying existing ones easy: class C(object): @property def x(self): "I am the 'x' property." return self._x @x.setter def x(self, value): self._x = value @x.deleter def x(self): del self._x """ def deleter(self, *args, **kwargs): # real signature unknown """ Descriptor to obtain a copy of the property with a different deleter. """ pass def getter(self, *args, **kwargs): # real signature unknown """ Descriptor to obtain a copy of the property with a different getter. """ pass def setter(self, *args, **kwargs): # real signature unknown """ Descriptor to obtain a copy of the property with a different setter. """ pass def __delete__(self, *args, **kwargs): # real signature unknown """ Delete an attribute of instance. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __get__(self, *args, **kwargs): # real signature unknown """ Return an attribute of instance, which is of type owner. """ pass def __init__(self, fget=None, fset=None, fdel=None, doc=None): # known special case of property.__init__ """ Property attribute. fget function to be used for getting an attribute value fset function to be used for setting an attribute value fdel function to be used for del'ing an attribute doc docstring Typical use is to define a managed attribute x: class C(object): def getx(self): return self._x def setx(self, value): self._x = value def delx(self): del self._x x = property(getx, setx, delx, "I'm the 'x' property.") Decorators make defining new properties or modifying existing ones easy: class C(object): @property def x(self): "I am the 'x' property." return self._x @x.setter def x(self, value): self._x = value @x.deleter def x(self): del self._x # (copied from class doc) """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __set__(self, *args, **kwargs): # real signature unknown """ Set an attribute of instance to value. """ pass fdel = property(lambda self: object(), lambda self, v: None, lambda self: None) # default fget = property(lambda self: object(), lambda self, v: None, lambda self: None) # default fset = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __isabstractmethod__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default class IndexOpsMixin(): """ Common ops mixin to support a unified interface / docs for Series / Index """ def tolist(self): """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns ------- list See Also -------- numpy.ndarray.tolist : Return the array as an a.ndim-levels deep nested list of Python scalars. """ # return self._values.tolist() ... to_list = tolist class NDFrame: ... class Series(IndexOpsMixin, NDFrame): """ One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). Operations between Series (+, -, /, \\*, \\*\\*) align values based on their associated index values-- they need not be the same length. The result index will be the sorted union of the two indexes. Parameters ---------- data : array-like, Iterable, dict, or scalar value Contains data stored in Series. If data is a dict, argument order is maintained. index : array-like or Index (1d) Values must be hashable and have the same length as `data`. Non-unique index values are allowed. Will default to RangeIndex (0, 1, 2, ..., n) if not provided. If data is dict-like and index is None, then the keys in the data are used as the index. If the index is not None, the resulting Series is reindexed with the index values. dtype : str, numpy.dtype, or ExtensionDtype, optional Data type for the output Series. If not specified, this will be inferred from `data`. See the :ref:`user guide ` for more usages. name : str, optional The name to give to the Series. copy : bool, default False Copy input data. Only affects Series or 1d ndarray input. See examples. Examples -------- Constructing Series from a dictionary with an Index specified # >>> d = {'a': 1, 'b': 2, 'c': 3} # >>> ser = pd.Series(data=d, index=['a', 'b', 'c']) # >>> ser a 1 b 2 c 3 dtype: int64 The keys of the dictionary match with the Index values, hence the Index values have no effect. # >>> d = {'a': 1, 'b': 2, 'c': 3} # >>> ser = pd.Series(data=d, index=['x', 'y', 'z']) # >>> ser x NaN y NaN z NaN dtype: float64 Note that the Index is first build with the keys from the dictionary. After this the Series is reindexed with the given Index values, hence we get all NaN as a result. Constructing Series from a list with `copy=False`. # >>> r = [1, 2] # >>> ser = pd.Series(r, copy=False) # >>> ser.iloc[0] = 999 # >>> r [1, 2] # >>> ser 0 999 1 2 dtype: int64 Due to input data type the Series has a `copy` of the original data even though `copy=False`, so the data is unchanged. Constructing Series from a 1d ndarray with `copy=False`. # >>> r = np.array([1, 2]) # >>> ser = pd.Series(r, copy=False) # >>> ser.iloc[0] = 999 # >>> r array([999, 2]) # >>> ser 0 999 1 2 dtype: int64 Due to input data type the Series has a `view` on the original data, so the data is changed as well. """ def __init__( self, data=None, index=None, dtype = None, name=None, copy = False, fastpath = False, ): ... @property def values(self): """ Return Series as ndarray or ndarray-like depending on the dtype. .. warning:: We recommend using :attr:`Series.array` or :meth:`Series.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- numpy.ndarray or ndarray-like See Also -------- Series.array : Reference to the underlying data. Series.to_numpy : A NumPy array representing the underlying data. Examples -------- # >>> pd.Series([1, 2, 3]).values array([1, 2, 3]) # >>> pd.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object) # >>> pd.Series(list('aabc')).astype('category').values ['a', 'a', 'b', 'c'] Categories (3, object): ['a', 'b', 'c'] Timezone aware datetime data is converted to UTC: # >>> pd.Series(pd.date_range('20130101', periods=3, ... tz='US/Eastern')).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]') """ # return self._mgr.external_values() ...